- Browse by Author
Browsing by Author "Huang, Kang-Chieh"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Astrocytes modulate neurodegenerative phenotypes associated with glaucoma in OPTN(E50K) human stem cell-derived retinal ganglion cells(Elsevier, 2022) Gomes, Cátia; VanderWall, Kirstin B.; Pan, Yanling; Lu, Xiaoyu; Lavekar, Sailee S.; Huang, Kang-Chieh; Fligor, Clarisse M.; Harkin, Jade; Zhang, Chi; Cummins, Theodore R.; Meyer, Jason S.; Medical and Molecular Genetics, School of MedicineAlthough the degeneration of retinal ganglion cells (RGCs) is a primary characteristic of glaucoma, astrocytes also contribute to their neurodegeneration in disease states. Although studies often explore cell-autonomous aspects of RGC neurodegeneration, a more comprehensive model of glaucoma should take into consideration interactions between astrocytes and RGCs. To explore this concept, RGCs and astrocytes were differentiated from human pluripotent stem cells (hPSCs) with a glaucoma-associated OPTN(E50K) mutation along with corresponding isogenic controls. Initial results indicated significant changes in OPTN(E50K) astrocytes, including evidence of autophagy dysfunction. Subsequently, co-culture experiments demonstrated that OPTN(E50K) astrocytes led to neurodegenerative properties in otherwise healthy RGCs, while healthy astrocytes rescued some neurodegenerative features in OPTN(E50K) RGCs. These results are the first to identify disease phenotypes in OPTN(E50K) astrocytes, including how their modulation of RGCs is affected. Moreover, these results support the concept that astrocytes could offer a promising target for therapeutic intervention in glaucoma.Item Autophagy disruption reduces mTORC1 activation leading to retinal ganglion cell neurodegeneration associated with glaucoma(Cold Spring Harbor Laboratory, 2023-01-04) Huang, Kang-Chieh; Gomes, Cátia; Shiga, Yukihiro; Belforte, Nicolas; VanderWall, Kirstin B.; Lavekar, Sailee S.; Fligor, Clarisse M.; Harkin, Jade; Di Polo, Adriana; Meyer, Jason S.; Biology, School of ScienceAutophagy dysfunction has been associated with several neurodegenerative diseases including glaucoma, characterized by the degeneration of retinal ganglion cells (RGCs). However, the mechanisms by which autophagy dysfunction promotes RGC damage remain unclear. Here, we hypothesized that perturbation of the autophagy pathway results in increased autophagic demand, thereby downregulating signaling through mammalian target of rapamycin complex 1 (mTORC1), a negative regulator of autophagy, contributing to the degeneration of RGCs. We identified an impairment of autophagic-lysosomal degradation and decreased mTORC1 signaling via activation of the stress sensor adenosine monophosphate-activated protein kinase (AMPK), along with subsequent neurodegeneration in RGCs differentiated from human pluripotent stem cells (hPSCs) with a glaucoma-associated variant of Optineurin (OPTN-E50K). Similarly, the microbead occlusion model of glaucoma resulting in ocular hypertension also exhibited autophagy disruption and mTORC1 downregulation. Pharmacological inhibition of mTORC1 in hPSC-derived RGCs recapitulated disease-related neurodegenerative phenotypes in otherwise healthy RGCs, while the mTOR-independent induction of autophagy reduced protein accumulation and restored neurite outgrowth in diseased OPTN-E50K RGCs. Taken together, these results highlight an important balance between autophagy and mTORC1 signaling essential for RGC homeostasis, while disruption to these pathways contributes to neurodegenerative features in glaucoma, providing a potential therapeutic target to prevent neurodegeneration.Item Elucidating Cellular Mechanisms Underlying Retinal Ganglion Cell Neurodegeneration in a Human Pluripotent Stem Cell-Derived Model(2022-12) Huang, Kang-Chieh; Cummins, Theodore R.; Meyer, Jason S.; Marrs, James A.; Perrin, Benjamin J.; Lasagna Reeves, Cristian A.Glaucoma is a leading cause of blindness characterized by the progressive loss of retinal ganglion cells (RGCs), essentially severing the connection between the eye and the brain. Among many underlying causes of the disease, mutations in the Optineurin (OPTN) gene result in severe RGC neurodegeneration in the absence of elevated intraocular pressure, providing a novel opportunity to study molecular mechanisms that lead to RGC neurodegeneration associated with glaucoma. Efforts of this study establishing a human pluripotent stem cell (hPSC)-derived in vitro disease model by inserting OPTN(E50K) mutation via CRISPR/Cas9 genome editing and investigate the cellular mechanisms of RGC neurodegeneration associated with glaucoma. OPTN(E50K) RGCs revealed neurodegeneration phenotypes, including downregulation of RGCs transcription factors, neurite retraction, and hyperexcitability, suggesting that OPTN(E50K) RGCs can serve as an appropriate disease model to study glaucoma-associated neurodegeneration. Since OPTN serves a primary role as an autophagy receptor, we further hypothesized that the OPTN(E50K) mutation disrupts autophagy in RGCs, and modulation of autophagy by mammalian target of rapamycin (mTOR)-independent pathways can preserve RGC phenotypes by maintaining mTOR signaling. OPTN(E50K) RGCs exhibited a higher number of OPTN puncta along with an overall reduced expression of OPTN protein, indicating a gain of toxic protein accumulation or loss of protein function. Furthermore, OPTN(E50K) RGCs revealed an accumulation of the autophagosome protein LC3 in a punctal manner as well as increased expression of lysosomal proteins, suggesting a disruption of degradation pathway in autophagosome and lysosome fusion. As mTOR complex 1 (mTORC1) signaling serves as a negative regulator of autophagy, a downregulation of mTORC1 signaling via activation of stress sensor adenosine monophosphate-activated protein kinase (AMPK) was observed as a possible compensatory mechanism for autophagy deficits in OPTN(E50K) RGCs. Pharmacological inhibition of mTOR in wild-type hRGCs resulted in similar disease-related phenotypes, while preservation of the mTOR pathway in OPTN(E50K) RGCs by treatment with the mTOR-independent autophagy modulator trehalose cleared OPTN accumulated puncta, preserving mTORC1 signaling, as well as rescuing neurodegenerative phenotypes. To further validate these associations in an animal model, the microbead occlusion mouse model was established by injection of magnetic microbeads in the anterior chamber to block aqueous outflow resulting ocular hypertension. In agreement with our findings in hRGCs, a decrease in mTOR signaling associated with an increase in the expression of autophagy-associated proteins was observed in RGCs in the microbead occlusion model. Additionally, these disease-related phenotypes were observed specifically within RGCs but not cortical neurons with an underlying OPTN(E50K) mutation, demonstrating that autophagy represents an essential pathway in RGCs to maintain homeostasis, and selective disrupt of autophagy in RGCs leads to neurodegeneration. Taken together, the results of this study highlight an essential balance between autophagy and mTORC1 signaling that is essential for the homeostasis of RGCs, while disruption to these signaling pathways contributes to neurodegenerative features in glaucoma. These results also demonstrated the ability to pharmacologically intervene to experimentally manipulate these pathways and rescue neurodegenerative phenotypes, providing a potential therapeutic target to prevent glaucoma-associated neurodegeneration.Item Enhanced mitochondrial biogenesis promotes neuroprotection in human pluripotent stem cell derived retinal ganglion cells(Springer Nature, 2023-02-24) Surma, Michelle; Anbarasu, Kavitha; Dutta, Sayanta; Olivera Perez, Leonardo J.; Huang, Kang-Chieh; Meyer, Jason S.; Das, Arupratan; Ophthalmology, School of MedicineMitochondrial dysfunctions are widely afflicted in central nervous system (CNS) disorders with minimal understanding on how to improve mitochondrial homeostasis to promote neuroprotection. Here we have used human stem cell differentiated retinal ganglion cells (hRGCs) of the CNS, which are highly sensitive towards mitochondrial dysfunctions due to their unique structure and function, to identify mechanisms for improving mitochondrial quality control (MQC). We show that hRGCs are efficient in maintaining mitochondrial homeostasis through rapid degradation and biogenesis of mitochondria under acute damage. Using a glaucomatous Optineurin mutant (E50K) stem cell line, we show that at basal level mutant hRGCs possess less mitochondrial mass and suffer mitochondrial swelling due to excess ATP production load. Activation of mitochondrial biogenesis through pharmacological inhibition of the Tank binding kinase 1 (TBK1) restores energy homeostasis, mitigates mitochondrial swelling with neuroprotection against acute mitochondrial damage for glaucomatous E50K hRGCs, revealing a novel neuroprotection mechanism.Item Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids(Cell Press, 2021-09-14) Fligor, Clarisse M.; Lavekar, Sailee S.; Harkin, Jade; Shields, Priya K.; VanderWall, Kirstin B.; Huang, Kang-Chieh; Gomes, Cátia; Meyer, Jason S.; Biology, School of ScienceThe development of the visual system involves the coordination of spatial and temporal events to specify the organization of varied cell types, including the elongation of axons from retinal ganglion cells (RGCs) to post-synaptic targets in the brain. Retinal organoids recapitulate many features of retinal development, yet have lacked downstream targets into which RGC axons extend, limiting the ability to model projections of the human visual system. To address these issues, retinal organoids were generated and organized into an in vitro assembloid model of the visual system with cortical and thalamic organoids. RGCs responded to environmental cues and extended axons deep into assembloids, modeling the projections of the visual system. In addition, RGC survival was enhanced in long-term assembloids, overcoming prior limitations of retinal organoids in which RGCs are lost. Overall, these approaches will facilitate studies of human visual system development, as well as diseases or injuries to this critical pathway.Item Induction of astrocyte reactivity promotes neurodegeneration in human pluripotent stem cell models(Elsevier, 2024) Gomes, Cátia; Huang, Kang-Chieh; Harkin, Jade; Baker, Aaron; Hughes, Jason M.; Pan, Yanling; Tutrow, Kaylee; VanderWall, Kirstin B.; Lavekar, Sailee S.; Hernandez, Melody; Cummins, Theodore R.; Canfield, Scott G.; Meyer, Jason S.; Medical and Molecular Genetics, School of MedicineReactive astrocytes are known to exert detrimental effects upon neurons in several neurodegenerative diseases, yet our understanding of how astrocytes promote neurotoxicity remains incomplete, especially in human systems. In this study, we leveraged human pluripotent stem cell (hPSC) models to examine how reactivity alters astrocyte function and mediates neurodegeneration. hPSC-derived astrocytes were induced to a reactive phenotype, at which point they exhibited a hypertrophic profile and increased complement C3 expression. Functionally, reactive astrocytes displayed decreased intracellular calcium, elevated phagocytic capacity, and decreased contribution to the blood-brain barrier. Subsequently, co-culture of reactive astrocytes with a variety of neuronal cell types promoted morphological and functional alterations. Furthermore, when reactivity was induced in astrocytes from patient-specific hPSCs (glaucoma, Alzheimer's disease, and amyotrophic lateral sclerosis), the reactive state exacerbated astrocytic disease-associated phenotypes. These results demonstrate how reactive astrocytes modulate neurodegeneration, significantly contributing to our understanding of a role for reactive astrocytes in neurodegenerative diseases.Item Morphological and Molecular Defects in Human Three-Dimensional Retinal Organoid Model of X-Linked Juvenile Retinoschisis(Elsevier, 2019-11-12) Huang, Kang-Chieh; Wang, Mong-Lien; Chen, Shih-Jen; Kuo, Jean-Cheng; Wang, Won-Jing; Nguyen, Phan Nguyen Nhi; Wahlin, Karl J.; Lu, Jyh-Feng; Tran, Audrey A.; Shi, Michael; Chien, Yueh; Yarmishyn, Aliaksandr A.; Tsai, Ping-Hsing; Yang, Tien-Chun; Jane, Wann-Neng; Chang, Chia-Ching; Peng, Chi-Hsien; Schlaeger, Thorsten M.; Chiou, Shih-Hwa; Biology, School of ScienceX-linked juvenile retinoschisis (XLRS), linked to mutations in the RS1 gene, is a degenerative retinopathy with a retinal splitting phenotype. We generated human induced pluripotent stem cells (hiPSCs) from patients to study XLRS in a 3D retinal organoid in vitro differentiation system. This model recapitulates key features of XLRS including retinal splitting, defective retinoschisin production, outer-segment defects, abnormal paxillin turnover, and impaired ER-Golgi transportation. RS1 mutation also affects the development of photoreceptor sensory cilia and results in altered expression of other retinopathy-associated genes. CRISPR/Cas9 correction of the disease-associated C625T mutation normalizes the splitting phenotype, outer-segment defects, paxillin dynamics, ciliary marker expression, and transcriptome profiles. Likewise, mutating RS1 in control hiPSCs produces the disease-associated phenotypes. Finally, we show that the C625T mutation can be repaired precisely and efficiently using a base-editing approach. Taken together, our data establish 3D organoids as a valid disease model.Item Retinal Ganglion Cells in a Dish: Current Strategies and Recommended Best Practices for Effective In Vitro Modeling of Development and Disease(Springer, 2023) Huang, Kang-Chieh; Gomes, Cátia; Meyer, Jason S.; Biology, School of ScienceThe ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) provides an extraordinary opportunity to study the development of RGCs as well as cellular mechanisms underlying their degeneration in optic neuropathies. In the past several years, multiple approaches have been established that allow for the generation of RGCs from hPSCs, with these methods greatly improved in more recent studies to yield mature RGCs that more faithfully recapitulate phenotypes within the eye. Nevertheless, numerous differences still remain between hPSC-RGCs and those found within the human eye, with these differences likely explained at least in part due to the environment in which hPSC-RGCs are grown. With the ultimate goal of generating hPSC-RGCs that most closely resemble those within the retina for proper studies of retinal development, disease modeling, as well as cellular replacement, we review within this manuscript the current effective approaches for the differentiation of hPSC-RGCs, as well as how they have been applied for the investigation of RGC neurodegenerative diseases such as glaucoma. Furthermore, we provide our opinions on the characteristics of RGCs necessary for their use as effective in vitro disease models and importantly, how these current systems should be improved to more accurately reflect disease states. The establishment of characteristics in differentiated hPSC-RGCs that more effectively mimic RGCs within the retina will not only enable their use as effective models of RGC development, but will also create a better disease model for the identification of mechanisms underlying the neurodegeneration of RGCs in disease states such as glaucoma, further facilitating the development of therapeutic approaches to rescue RGCs from degeneration in disease states.Item Retinal Ganglion Cells With a Glaucoma OPTN(E50K) Mutation Exhibit Neurodegenerative Phenotypes when Derived from Three-Dimensional Retinal Organoids(Elsevier, 2020-07-14) VanderWall, Kirstin B.; Huang, Kang-Chieh; Pan, Yanling; Lavekar, Sailee S.; Fligor, Clarisse M.; Allsop, Anna R.; Lentsch, Kelly A.; Dang, Pengtao; Zhang, Chi; Tseng, Henry C.; Cummins, Theodore R.; Meyer, Jason S.; Medical and Molecular Genetics, School of MedicineRetinal ganglion cells (RGCs) serve as the connection between the eye and the brain, with this connection disrupted in glaucoma. Numerous cellular mechanisms have been associated with glaucomatous neurodegeneration, and useful cellular models of glaucoma allow for the precise analysis of degenerative phenotypes. Human pluripotent stem cells (hPSCs) serve as powerful tools for studying human disease, particularly cellular mechanisms underlying neurodegeneration. Thus, efforts focused upon hPSCs with an E50K mutation in the Optineurin (OPTN) gene, a leading cause of inherited forms of glaucoma. CRISPR/Cas9 gene editing introduced the OPTN(E50K) mutation into existing lines of hPSCs, as well as generating isogenic controls from patient-derived lines. RGCs differentiated from OPTN(E50K) hPSCs exhibited numerous neurodegenerative deficits, including neurite retraction, autophagy dysfunction, apoptosis, and increased excitability. These results demonstrate the utility of OPTN(E50K) RGCs as an in vitro model of neurodegeneration, with the opportunity to develop novel therapeutic approaches for glaucoma.