- Browse by Author
Browsing by Author "Huang, Jianhui"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item The impacts of precipitation increase and nitrogen addition on soil respiration in a semiarid temperate steppe(Wiley, 2017-01) Zhang, Xiaolin; Tan, Yulian; Zhang, Bingwei; Li, Ang; Daryanto, Stefani; Wang, Lixin; Huang, Jianhui; Department of Earth Sciences, School of ScienceSoil respiration, Rs, is strongly controlled by water availability in semiarid grasslands. However, how Rs is affected by precipitation change (either as rainfall or as snowfall) especially under increasing nitrogen (N) deposition has been uncertain. A manipulative experiment to investigate the responses of growing season Rs to changes in spring snowfall or summer rainfall with or without N addition was conducted in the semiarid temperate steppe of China during three hydrologically contrasting years. Our results showed that both spring snow addition and summer water addition significantly increased Rs by increasing soil moisture. The effect of spring snow addition only occurred in years with both relatively lower natural snowfall and later snowmelt time. Summer water addition showed a much stronger effect on Rs by increasing plant root growth and microbial activities, but the magnitude also largely depended on the possible legacy effect of previous year precipitation. Our results indicated that precipitation increase in the form of snowfall had weaker effects than that in the form of rainfall as the former only accounted for less than 30% of total precipitation. Compared with other ecosystem processes, Rs was less responsible for increase in N deposition as it did not increase root productivity and microbial activities in the soils. Our results provided field data constraints for modeling the ecosystem carbon balance under the future global change scenarios in semiarid grasslands.Item Linking ethylene to nitrogen-dependent leaf longevity of grass species in a temperate steppe(2013-10) Ren, Haiyan; Xu, Zhuwen; Zhang, Wenhao; Huang, Jianhui; Chen, Shiping; Wang, Lixin; Han, XingguoBackground and Aims Leaf longevity is an important plant functional trait that often varies with soil nitrogen supply. Ethylene is a classical plant hormone involved in the control of senescence and abscission, but its role in nitrogen-dependent leaf longevity is largely unknown. Methods Pot and field experiments were performed to examine the effects of nitrogen addition on leaf longevity and ethylene production in two dominant plant species, Agropyron cristatum and Stipa krylovii, in a temperate steppe in northern China. Key Results Nitrogen addition increased leaf ethylene production and nitrogen concentration but shortened leaf longevity; the addition of cobalt chloride, an ethylene biosynthesis inhibitor, reduced leaf nitrogen concentration and increased leaf longevity. Path analysis indicated that nitrogen addition reduced leaf longevity mainly through altering leaf ethylene production. Conclusions These findings provide the first experimental evidence in support of the involvement of ethylene in nitrogen-induced decrease in leaf longevity.Item Linking ethylene to nitrogen-dependent leaf longevity of grass species in a temperate steppe(Oxford University Press, 2013-12) Ren, Haiyan; Xu, Zhuwen; Zhang, Wenhao; Jiang, Lin; Huang, Jianhui; Chen, Shiping; Wang, Lixin; Han, Xingguo; Department of Earth Sciences, School of ScienceBACKGROUND AND AIMS: Leaf longevity is an important plant functional trait that often varies with soil nitrogen supply. Ethylene is a classical plant hormone involved in the control of senescence and abscission, but its role in nitrogen-dependent leaf longevity is largely unknown. METHODS: Pot and field experiments were performed to examine the effects of nitrogen addition on leaf longevity and ethylene production in two dominant plant species, Agropyron cristatum and Stipa krylovii, in a temperate steppe in northern China. KEY RESULTS: Nitrogen addition increased leaf ethylene production and nitrogen concentration but shortened leaf longevity; the addition of cobalt chloride, an ethylene biosynthesis inhibitor, reduced leaf nitrogen concentration and increased leaf longevity. Path analysis indicated that nitrogen addition reduced leaf longevity mainly through altering leaf ethylene production. CONCLUSIONS: These findings provide the first experimental evidence in support of the involvement of ethylene in nitrogen-induced decrease in leaf longevity.Item Mass loss and nutrient dynamics during litter decomposition under three mixing treatments in a typical steppe in Inner Mongolia(2013-05) Tan, Yulian; Chen, Jin; Yan, Liming; Huang, Jianhui; Wang, Lixin; Chen, ShipingBackground and aims Mixing effects during litter decomposition could occur between two or more different litter species because of the potential nutrient transfer. However, evidence of mixing effects is variable and the underlying mechanisms remain unclear. Using a three-year decomposition experiment, we aim to examine for the effects of litter mixing and position on decomposition rates and nitrogen (N) and phosphorus (P) dynamics. Methods We studied litter decomposition of Stipa krylovii (Sk) and Astragalus galactites (Ag), two dominant species with contrasting litter quality, in a typical steppe of northern China in both single decomposition and three mixing treatments. The three mixing treatments included thorough mixing (Sk-Ag), Ag over Sk (Ag/Sk), and Sk over Ag (Sk/Ag). Results Both the Sk-Ag and the Sk/Ag mixture had negative mixing effects on the mass loss of the litter mixture, while the Ag/Sk mixture had a neutral mixing effect. The percent mass loss was higher when the litter species was placed at the top (25.0 and 51.9 % of mass remaining for Ag and Sk, respectively) than at the bottom (38.3 and 61.8 % of mass remaining for Ag and Sk, respectively). The Sk/Ag mixture had negative effects on the release of N while all three mixing treatments had positive effects on the release of P. Conclusions Our results indicate that: (1) mixing treatments can induce different mixing effects; (2) environmental factors likely play an important role in controlling the mixing effect; and (3) litter-mixtures have different non-additive effects on N and P, which may further increase the heterogeneity of N and P availability as the two litter species may fall differentially in terms of space and time.Item Nitrogen addition amplified water effects on species composition shift and productivity increase(Oxford, 2021-10) Zhang, Xiaolin; Hasi, Muqier; Li, Ang; Tan, Yulian; Daryanto, Stefani; Wang, Lixin; Zhang, Xueyao; Chen, Shiping; Huang, Jianhui; Earth Sciences, School of ScienceAims Water and nitrogen (N) are two key resources in dryland ecosystems, but they may have complex interactive effects on the community structure and ecosystem functions. How future precipitation (rainfall vs snowfall) change will impact aboveground net primary production (ANPP) is far from clear, especially when combined with increasing N availability. Methods In this study, we investigated changes in community productivity, abundance and aboveground biomass of two dominant plant functional groups (PFGs), i.e. perennial rhizome grasses (PR) and perennial bunchgrasses (PB) under the impacts of increased precipitation (rainfall vs snowfall) combined with N addition in a semiarid temperate steppe. Important Findings Summer rainfall augmentation marginally increased community ANPP, whereas it significantly increased the abundance and aboveground biomass of PR, but not those of PB. Summer rainfall addition increased the fraction of PR biomass (fPR) while decreased that of PB (fPB). Spring snow addition had no effect on aboveground biomass of either compositional PFG although it marginally increased community ANPP. Nitrogen addition significantly increased community ANPP with greater increase in PR under summer rainfall addition, indicating strong interactive effects on community ANPP largely by enhancing PR biomass. We also found a nonlinear increase in the positive effect of nitrogen addition on productivity with the increased precipitation amount. These findings indicate an amplified impact of precipitation increase on grassland productivity under the accelerated atmospheric N deposition in the future.Item Nitrogen addition results in Medicago sativa switching nitrogen sources(Taylor & Francis, 2021) Wang, Yinliu; Hasi, Muqier; Bu, Dongdong; Li, Ang; Xue, Jianguo; Wang, Changhui; Tian, Qiuying; Niu, Guoxiang; Geng, Qianqian; Wang, Lixin; Huang, Jianhui; Earth Sciences, School of ScienceBackground Nitrogen (N) addition may have strong impacts on legume growth and their biological N fixation (BNF), but how legume N acquisition sources respond to N inputs have yet to be comprehensively assessed.Aims We quantified the effects of N addition on the growth and BNF of Medicago sativa and to assess the response of legume N acquisition to N addition.Methods We grew M. sativa in the greenhouse under gradients of added NH4NO3 and analysed the variables that were relative to growth and BNF, such as N concentration, biomass, δ15N values, nodule number, percentage of N derived from the atmosphere (Ndfa%).Results Nitrogen addition had marginal effects on plant biomass production and foliar N concentration. Foliar δ15N value increased with increasing added N, while Ndfa% decreased. The number of nodules formed also decreased with N addition while the nitrogenase (nifH)genecopies per unit nodule mass was not significantly different with N addition.Conclusions These findings indicate that increasing mineral N availability decreases symbiotic investment into BNF, mainly by reducing nodule formation; this was found to have no significant impact on plant growth because the plant changes its N source from BNF-N to mineral N derived from the soil.Item Water and nitrogen availability co-control ecosystem CO2 exchange in a semiarid temperate steppe(Springer Nature, 2015-10-23) Zhang, Xiaolin; Tan, Yulian; Li, Ang; Ren, Tingting; Chen, Shiping; Wang, Lixin; Huang, Jianhui; Department of Earth Sciences, School of ScienceBoth water and nitrogen (N) availability have significant effects on ecosystem CO2 exchange (ECE), which includes net ecosystem productivity (NEP), ecosystem respiration (ER) and gross ecosystem photosynthesis (GEP). How water and N availability influence ECE in arid and semiarid grasslands is still uncertain. A manipulative experiment with additions of rainfall, snow and N was conducted to test their effects on ECE in a semiarid temperate steppe of northern China for three consecutive years with contrasting natural precipitation. ECE increased with annual precipitation but approached peak values at different precipitation amount. Water addition, especially summer water addition, had significantly positive effects on ECE in years when the natural precipitation was normal or below normal, but showed trivial effect on GEP when the natural precipitation was above normal as effects on ER and NEP offset one another. Nitrogen addition exerted non-significant or negative effects on ECE when precipitation was low but switched to a positive effect when precipitation was high, indicating N effect triggered by water availability. Our results indicate that both water and N availability control ECE and the effects of future precipitation changes and increasing N deposition will depend on how they can change collaboratively in this semiarid steppe ecosystem.