ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Huang, Guoying"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Engineering human ventricular heart muscles based on a highly efficient system for purification of human pluripotent stem cell-derived ventricular cardiomyocytes
    (BMC, 2017-09-29) Li, Bin; Yang, Hui; Wang, Xiaochen; Zhan, Yongkun; Sheng, Wei; Cai, Huanhuan; Xin, Haoyang; Liang, Qianqian; Zhou, Ping; Lu, Chao; Qian, Ruizhe; Chen, Sifeng; Yang, Pengyuan; Zhang, Jianyi; Shou, Weinian; Huang, Guoying; Liang, Ping; Sun, Ning; Pediatrics, School of Medicine
    Background Most infarctions occur in the left anterior descending coronary artery and cause myocardium damage of the left ventricle. Although current pluripotent stem cells (PSCs) and directed cardiac differentiation techniques are able to generate fetal-like human cardiomyocytes, isolation of pure ventricular cardiomyocytes has been challenging. For repairing ventricular damage, we aimed to establish a highly efficient purification system to obtain homogeneous ventricular cardiomyocytes and prepare engineered human ventricular heart muscles in a dish. Methods The purification system used TALEN-mediated genomic editing techniques to insert the neomycin or EGFP selection marker directly after the myosin light chain 2 (MYL2) locus in human pluripotent stem cells. Purified early ventricular cardiomyocytes were estimated by immunofluorescence, fluorescence-activated cell sorting, quantitative PCR, microelectrode array, and patch clamp. In subsequent experiments, the mixture of mature MYL2-positive ventricular cardiomyocytes and mesenchymal cells were cocultured with decellularized natural heart matrix. Histological and electrophysiology analyses of the formed tissues were performed 2 weeks later. Results Human ventricular cardiomyocytes were efficiently isolated based on the purification system using G418 or flow cytometry selection. When combined with the decellularized natural heart matrix as the scaffold, functional human ventricular heart muscles were prepared in a dish. Conclusions These engineered human ventricular muscles can be great tools for regenerative therapy of human ventricular damage as well as drug screening and ventricular-specific disease modeling in the future. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0651-x) contains supplementary material, which is available to authorized users.
  • Loading...
    Thumbnail Image
    Item
    QKI is a critical pre-mRNA alternative splicing regulator of cardiac myofibrillogenesis and contractile function
    (Springer Nature, 2021-01-04) Chen, Xinyun; Liu, Ying; Xu, Chen; Ba, Lina; Liu, Zhuo; Li, Xiuya; Huang, Jie; Simpson, Ed; Gao, Hongyu; Cao, Dayan; Sheng, Wei; Qi, Hanping; Ji, Hongrui; Sanderson, Maria; Cai, Chen-Leng; Li, Xiaohui; Yang, Lei; Na, Jie; Yamamura, Kenichi; Liu, Yunlong; Huang, Guoying; Shou, Weinian; Sun, Ning; Pediatrics, School of Medicine
    The RNA-binding protein QKI belongs to the hnRNP K-homology domain protein family, a well-known regulator of pre-mRNA alternative splicing and is associated with several neurodevelopmental disorders. Qki is found highly expressed in developing and adult hearts. By employing the human embryonic stem cell (hESC) to cardiomyocyte differentiation system and generating QKI-deficient hESCs (hESCs-QKIdel) using CRISPR/Cas9 gene editing technology, we analyze the physiological role of QKI in cardiomyocyte differentiation, maturation, and contractile function. hESCs-QKIdel largely maintain normal pluripotency and normal differentiation potential for the generation of early cardiogenic progenitors, but they fail to transition into functional cardiomyocytes. In this work, by using a series of transcriptomic, cell and biochemical analyses, and the Qki-deficient mouse model, we demonstrate that QKI is indispensable to cardiac sarcomerogenesis and cardiac function through its regulation of alternative splicing in genes involved in Z-disc formation and contractile physiology, suggesting that QKI is associated with the pathogenesis of certain forms of cardiomyopathies.
  • Loading...
    Thumbnail Image
    Item
    The roles of SMYD4 in epigenetic regulation of cardiac development in zebrafish
    (PLOS, 2018-08-15) Xiao, Deyong; Wang, Huijun; Hao, Lili; Guo, Xiao; Ma, Xiaojing; Qian, Yanyan; Chen, Hongbo; Ma, Jing; Zhang, Jin; Sheng, Wei; Shou, Weinian; Huang, Guoying; Ma, Duan; Pediatrics, School of Medicine
    SMYD4 belongs to a family of lysine methyltransferases. We analyzed the role of smyd4 in zebrafish development by generating a smyd4 mutant zebrafish line (smyd4L544Efs*1) using the CRISPR/Cas9 technology. The maternal and zygotic smyd4L544Efs*1 mutants demonstrated severe cardiac malformations, including defects in left-right patterning and looping and hypoplastic ventricles, suggesting that smyd4 was critical for heart development. Importantly, we identified two rare SMYD4 genetic variants in a 208-patient cohort with congenital heart defects. Both biochemical and functional analyses indicated that SMYD4(G345D) was pathogenic. Our data suggested that smyd4 functions as a histone methyltransferase and, by interacting with HDAC1, also serves as a potential modulator for histone acetylation. Transcriptome and bioinformatics analyses of smyd4L544Efs*1 and wild-type developing hearts suggested that smyd4 is a key epigenetic regulator involved in regulating endoplasmic reticulum-mediated protein processing and several important metabolic pathways in developing zebrafish hearts.
  • Loading...
    Thumbnail Image
    Item
    Single-Cell Lineage Tracing Reveals that Oriented Cell Division Contributes to Trabecular Morphogenesis and Regional Specification
    (Elsevier, 2016-04-05) Li, Jingjing; Miao, Lianjie; Shieh, David; Spiotto, Ernest; Li, Jian; Zhou, Bin; Paul, Antoni; Schwartz, Robert J.; Firulli, Anthony B.; Singer, Harold A.; Huang, Guoying; Wu, Mingfu; Department of Pediatrics, IU School of Medicine
    The cardiac trabeculae are sheet-like structures extending from the myocardium that function to increase surface area. A lack of trabeculation causes embryonic lethality due to compromised cardiac function. To understand the cellular and molecular mechanisms of trabecular formation, we genetically labeled individual cardiomyocytes prior to trabeculation via the brainbow multicolor system and traced and analyzed the labeled cells during trabeculation by whole-embryo clearing and imaging. The clones derived from labeled single cells displayed four different geometric patterns that are derived from different patterns of oriented cell division (OCD) and migration. Of the four types of clones, the inner, transmural, and mixed clones contributed to trabecular cardiomyocytes. Further studies showed that perpendicular OCD is an extrinsic asymmetric cell division that putatively contributes to trabecular regional specification. Furthermore, N-Cadherin deletion in labeled clones disrupted the clonal patterns. In summary, our data demonstrate that OCD contributes to trabecular morphogenesis and specification.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University