- Browse by Author
Browsing by Author "Huan, Tianxiao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Computational Biomarker Discovery: From Systems Biology to Predictive and Personalized Medicine Applications(Office of the Vice Chancellor for Research, 2010-04-09) Chen, Jake Yue; Wu, Xiaogang; Zhang, Fan; Pandey, Ragini; Huang, Hui; Huan, TianxiaoWith the advent of Genome-based Medicine, there is an escalating need for discovering how the modifications of biological molecules, either individually or as an ensemble, can be uniquely associated with human physiological states. This knowledge could lead to breakthroughs in the development of clinical tests known as "biomarker tests" to assess disease risks, early onset, prognosis, and treatment outcome predictions. Therefore, development of molecular biomarkers is a key agenda in the next 5-10 years to take full advantage of the human genome to improve human well-beings. However, the complexity of human biological systems and imperfect instrumentations of high-throughput biological instruments/results have created significant hurdles in biomarker development. Only recently did computational methods become an important player of the research topic, which has seen conventional molecular biomarkers development both extremely long and cost-ineffective. At Indiana Center for Systems Biology and Personalized Medicine, we are developing several computational systems biology strategies to address these challenges. We will show examples of how we approach the problem using a variety of computational techniques, including data mining, algorithm development to take into account of biological contexts, biological knowledge integration, and information visualization. Finally, we outline how research in this direction to derive more robust molecular biomarkers may lead to predictive and personalized medicine. Indiana Center for Systems Biology and Personalized Medicine (CSBPM) was founded in 2007 as an IUPUI signature center by Dr. Jake Chen and his colleagues in the Indiana University School of Informatics, School of Medicine, and School of Science. CSBPM is the only research center in the State of Indiana with the primary goal of pursuing predictive and personalized medicine. CSBPM currently consists of eleven faculty members from the School of Medicine, School of Science, School of Engineering, School of Informatics, and Indiana University Simon Cancer Center. The primary mission of the center is to foster the development and use of systems biology and computational modeling techniques to address challenges in future genome-based medicine. The ultimate goal of the center is to shorten the discovery-to-practice gap between integrative ―Omics‖ biology studies—including genomics, transcriptomics, proteomics, and metabolomics—and predictive and personalized medicine applications.Item ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining(BioMed Central, 2008-08-12) Huan, Tianxiao; Sivachenko, Andrey Y.; Harrison, Scott H.; Chen, Jake Yue; Computer and Information Science, School of ScienceBackground New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. Results We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. Conclusion The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies.