- Browse by Author
Browsing by Author "Hu, Xin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Haemophilus ducreyi Infection Induces Oxidative Stress, Central Metabolic Changes, and a Mixed Pro- and Anti-inflammatory Environment in the Human Host(American Society for Microbiology, 2022) Brothwell, Julie A.; Fortney, Kate R.; Gao, Hongyu; Wilson, Landon S.; Andrews, Caroline F.; Tran, Tuan M.; Hu, Xin; Batteiger, Teresa A.; Barnes, Stephen; Liu, Yunlong; Spinola, Stanley M.; Microbiology and Immunology, School of MedicineFew studies have investigated host-bacterial interactions at sites of infection in humans using transcriptomics and metabolomics. Haemophilus ducreyi causes cutaneous ulcers in children and the genital ulcer disease chancroid in adults. We developed a human challenge model in which healthy adult volunteers are infected with H. ducreyi on the upper arm until they develop pustules. Here, we characterized host-pathogen interactions in pustules using transcriptomics and metabolomics and examined interactions between the host transcriptome and metabolome using integrated omics. In a previous pilot study, we determined the human and H. ducreyi transcriptomes and the metabolome of pustule and wounded sites of 4 volunteers (B. Griesenauer, T. M. Tran, K. R. Fortney, D. M. Janowicz, et al., mBio 10:e01193-19, 2019, https://doi.org/10.1128/mBio.01193-19). While we could form provisional transcriptional networks between the host and H. ducreyi, the study was underpowered to integrate the metabolome with the host transcriptome. To better define and integrate the transcriptomes and metabolome, we used samples from both the pilot study (n = 4) and new volunteers (n = 8) to identify 5,495 human differentially expressed genes (DEGs), 123 H. ducreyi DEGs, 205 differentially abundant positive ions, and 198 differentially abundant negative ions. We identified 42 positively correlated and 29 negatively correlated human-H. ducreyi transcriptome clusters. In addition, we defined human transcriptome-metabolome networks consisting of 9 total clusters, which highlighted changes in fatty acid metabolism and mitigation of oxidative damage. Taken together, the data suggest a mixed pro- and anti-inflammatory environment and rewired central metabolism in the host that provides a hostile, nutrient-limited environment for H. ducreyi.Item The SARS-CoV-2 SSHHPS Recognized by the Papain-like Protease(ACS, 2021-05-21) Aceves, Nathalie M.; Reynolds, Nathanael D.; Liu, Jinny L.; Compton, Jaimee R.; Leary, Dagmar H.; Freitas, Brendan T.; Pegan, Scott D.; Doctor, Katarina Z.; Wu, Fred Y.; Hu, Xin; Legler, Patricia M.; Medicine, School of MedicineViral proteases are highly specific and recognize conserved cleavage site sequences of ∼6–8 amino acids. Short stretches of homologous host–pathogen sequences (SSHHPS) can be found spanning the viral protease cleavage sites. We hypothesized that these sequences corresponded to specific host protein targets since >40 host proteins have been shown to be cleaved by Group IV viral proteases and one Group VI viral protease. Using PHI-BLAST and the viral protease cleavage site sequences, we searched the human proteome for host targets and analyzed the hit results. Although the polyprotein and host proteins related to the suppression of the innate immune responses may be the primary targets of these viral proteases, we identified other cleavable host proteins. These proteins appear to be related to the virus-induced phenotype associated with Group IV viruses, suggesting that information about viral pathogenesis may be extractable directly from the viral genome sequence. Here we identify sequences cleaved by the SARS-CoV-2 papain-like protease (PLpro) in vitro within human MYH7 and MYH6 (two cardiac myosins linked to several cardiomyopathies), FOXP3 (an X-linked Treg cell transcription factor), ErbB4 (HER4), and vitamin-K-dependent plasma protein S (PROS1), an anticoagulation protein that prevents blood clots. Zinc inhibited the cleavage of these host sequences in vitro. Other patterns emerged from multispecies sequence alignments of the cleavage sites, which may have implications for the selection of animal models and zoonosis. SSHHPS/nsP is an example of a sequence-specific post-translational silencing mechanism.