- Browse by Author
Browsing by Author "Hu, Qin"
Now showing 1 - 10 of 33
Results Per Page
Sort Options
Item A trustless architecture of blockchain-enabled metaverse(Elsevier, 2023-03) Xu, Minghui; Guo, Yihao; Hu, Qin; Xiong, Zehui; Yu, Dongxiao; Cheng, Xuizhen; Computer and Information Science, School of ScienceMetaverse has rekindled human beings’ desire to further break space-time barriers by fusing the virtual and real worlds. However, security and privacy threats hinder us from building a utopia. A metaverse embraces various techniques, while at the same time inheriting their pitfalls and thus exposing large attack surfaces. Blockchain, proposed in 2008, was regarded as a key building block of metaverses. it enables transparent and trusted computing environments using tamper-resistant decentralized ledgers. Currently, blockchain supports Decentralized Finance (DeFi) and Non-fungible Tokens (NFT) for metaverses. However, the power of a blockchain has not been sufficiently exploited. In this article, we propose a novel trustless architecture of blockchain-enabled metaverse, aiming to provide efficient resource integration and allocation by consolidating hardware and software components. To realize our design objectives, we provide an On-Demand Trusted Computing Environment (OTCE) technique based on local trust evaluation. Specifically, the architecture adopts a hypergraph to represent a metaverse, in which each hyperedge links a group of users with certain relationship. Then the trust level of each user group can be evaluated based on graph analytics techniques. Based on the trust value, each group can determine its security plan on demand, free from interference by irrelevant nodes. Besides, OTCEs enable large-scale and flexible application environments (sandboxes) while preserving a strong security guarantee.Item Black Swan in Blockchain: Micro Analysis of Natural Forking(IEEE, 2022-11-04) Shi, Hongwei; Wang, Shengling; Hu, Qin; Cheng, Xiuzhen; Computer and Information Science, School of ScienceNatural forking is tantamount to the “black swan” event in blockchain since it emerges unexpectedly with a small probability, and may incur low resource utilization and costly economic loss. The ongoing literature analyzes natural forking mainly from the macroscopic perspective, which is insufficient to further understand this phenomenon since it roots in the instantaneous difference between block creation and propagation microscopically. Hence, in this paper, we fill this gap by leveraging the large deviation theory to conduct the first micro study of natural forking, aiming to reveal its inherent mechanism substantially. Our work is featured by 1) conceptual innovation . We creatively abstract the blockchain overlay network as a “service system”. This allows us to investigate natural forking from the perspective of “supply and demand”. Based on this, we can identify the competitive dynamics of blockchain and construct a queuing model to characterize natural forking; 2) progressiveness . We scrutinize the natural forking probability as well as its decay rate via a three-step scheme from simple to complex, which are the single-source i.i.d. scheme, the single-source non-i.i.d. scheme, and the many-source non-i.i.d. scheme. By doing so, we can answer when and how fast should we take actions and what actions should we take against natural forking. Our valuable findings can not only put forward decisive guidelines theoretically from the top level, but also engineer optimal countermeasures operationally on a practical level to thwart natural forking.Item Blockchain and Federated Edge Learning for Privacy-Preserving Mobile Crowdsensing(IEEE Xplore, 2021-11) Hu, Qin; Wang, Zhilin; Xu, Minghui; Cheng, Xiuzhen; Computer and Information Science, School of ScienceMobile crowdsensing (MCS) counting on the mobility of massive workers helps the requestor accomplish various sensing tasks with more flexibility and lower cost. However, for the conventional MCS, the large consumption of communication resources for raw data transmission and high requirements on data storage and computing capability hinder potential requestors with limited resources from using MCS. To facilitate the widespread application of MCS, we propose a novel MCS learning framework leveraging on blockchain technology and the new concept of edge intelligence based on federated learning (FL), which involves four major entities, including requestors, blockchain, edge servers and mobile devices as workers. Even though there exist several studies on blockchain-based MCS and blockchain-based FL, they cannot solve the essential challenges of MCS with respect to accommodating resource-constrained requestors or deal with the privacy concerns brought by the involvement of requestors and workers in the learning process. To fill the gaps, four main procedures, i.e., task publication, data sensing and submission, learning to return final results, and payment settlement and allocation, are designed to address major challenges brought by both internal and external threats, such as malicious edge servers and dishonest requestors. Specifically, a mechanism design based data submission rule is proposed to guarantee the data privacy of mobile devices being truthfully preserved at edge servers; consortium blockchain based FL is elaborated to secure the distributed learning process; and a cooperation-enforcing control strategy is devised to elicit full payment from the requestor. Extensive simulations are carried out to evaluate the performance of our designed schemes.Item CommandFence: A Novel Digital-Twin-Based Preventive Framework for Securing Smart Home Systems(IEEE, 2023-05) Xiao, Yinhao; Jia, Yizhen; Hu, Qin; Cheng, Xiuzhen; Gong, Bei; Yu, Jiguo; Computer and Information Science, School of ScienceSmart home systems are both technologically and economically advancing rapidly. As people become gradually inalienable to smart home infrastructures, their security conditions are getting more and more closely tied to everyone's privacy and safety. In this paper, we consider smart apps, either malicious ones with evil intentions or benign ones with logic errors, that can cause property loss or even physical sufferings to the user when being executed in a smart home environment and interacting with human activities and environmental changes. Unfortunately, current preventive measures rely on permission-based access control, failing to provide ideal protections against such threats due to the nature of their rigid designs. In this paper, we propose CommandFence, a novel digital-twin-based security framework that adopts a fundamentally new concept of protecting the smart home system by letting any sequence of app commands to be executed in a virtual smart home system, in which a deep-q network (DQN) is used to predict if the sequence could lead to a risky consequence. CommandFence is composed of an Interposition Layer to interpose app commands and an Emulation Layer to figure out whether they can cause any risky smart home state if correlating with possible human activities and environmental changes. We fully implemented our CommandFence implementation and tested against 553 official SmartApps on the Samsung SmartThings platform and successfully identified 34 potentially dangerous ones, with 31 of them reported to be problematic Author: Please provide index terms/keywords for your article. To download the IEEE Taxonomy go to http://www.ieee.org/documents/taxonomy_v101.pdf ?> the first time to our best knowledge. Moreover, We tested our CommandFence on the 10 malicious SmartApps created by Jia et al. 2017, and successfully identified 7 of them as risky, with the missed ones actually only causing smartphone information leak (not harmful to the smart home system). We also tested CommandFence against the 17 benign SmartApps with logic errors developed by Celik et al. 2017, and achieved a 100% accuracy. Our experimental studies indicate that adopting CommandFence incurs a neglectable overhead of 0.1675 seconds.Item A Correlated Equilibrium based Transaction Pricing Mechanism in Blockchain(IEEE, 2020-05) Hu, Qin; Nigam, Yash; Wang, Zhilin; Wang, Yawei; Xiao, Yinhao; Computer and Information Science, School of ScienceAlthough transaction fees are not obligatory in most of the current blockchain systems, extensive studies confirm their importance in maintaining the security and sustainability of blockchain. To enhance blockchain in the long term, it is crucial to design effective transaction pricing mechanisms. Different from the existing schemes based on auctions with more consideration about the profit of miners, we resort to game theory and propose a correlated equilibrium based transaction pricing mechanism through solving a pricing game among users with transactions, which can achieve both the individual and global optimum. To avoid the computational complexity exponentially increasing with the number of transactions, we further improve the game-theoretic solution with an approximate algorithm, which can derive almost the same results as the original one but costs significantly reduced time. Experimental results demonstrate the effectiveness and efficiency of our proposed mechanism.Item Cost-Efficient Mobile Crowdsensing with Spatial-Temporal Awareness(IEEE, 2019-11) Hu, Qin; Wang, Shengling; Cheng, Xiuzhen; Zhang, Junshan; Lv, Weifeng; Computer and Information Science, School of ScienceA cost-efficient deal that can achieve high sensing quality with a low reward is the permanent goal of the requestor in mobile crowdsensing, which heavily depends on the quantity and quality of the workers. However, spatial diversity and temporal dynamics lead to heterogeneous worker supplies, making it hard for the requestor to utilize a homogeneous pricing strategy to realize a cost-efficient deal from a systematic point of view. Therefore, a cost-efficient deal calls for a cost-efficient pricing strategy, boosting the whole sensing quality with less operation (computation) cost. However, state-of-the-art studies ignore the dual cost-efficient demands of large-scale sensing tasks. Hence, we propose a combinatorial pinning zero-determinant (ZD) strategy, which empowers the requestor to utilize a single strategy within its feasible range to minimize the total expected utilities of the workers throughout all sensing regions for each time interval, without being affected by the strategies of the workers. Through turning the worker-customized strategy to an interval-customized one, the proposed combinatorial pinning ZD strategy reduces the number of pricing strategies required by the requestor from O(n^3)to O(n)$ . Besides, it extends the application scenarios of the classical ZD strategy from two-player simultaneous-move games to multiple-heterogeneous-player sequential-move ones, where a leader can determine the linear relationship of the players' expected utilities.Item Defense Strategies Toward Model Poisoning Attacks in Federated Learning: A Survey(IEEE, 2022-04) Wang, Zhilin; Kang, Qiao; Zhang, Xinyi; Hu, Qin; Computer and Information Science, School of ScienceAdvances in distributed machine learning can empower future communications and networking. The emergence of federated learning (FL) has provided an efficient framework for distributed machine learning, which, however, still faces many security challenges. Among them, model poisoning attacks have a significant impact on the security and performance of FL. Given that there have been many studies focusing on defending against model poisoning attacks, it is necessary to survey the existing work and provide insights to inspire future research. In this paper, we first classify defense mechanisms for model poisoning attacks into two categories: evaluation methods for local model updates and aggregation methods for the global model. Then, we analyze some of the existing defense strategies in detail. We also discuss some potential challenges and future research directions. To the best of our knowledge, we are the first to survey defense methods for model poisoning attacks in FL.Item Efficient Secure E-Voting and its Application in Cybersecurity Education(2022-05) Swearingen, Nathan; Zou, Xukai; Li, Feng; Hu, QinAs the need for large elections increases and computer networking becomes more widely used, e-voting has become a major topic of interest in the field of cryptography. However, lack of cryptography knowledge among the general public is one obstacle to widespread deployment. In this paper, we present an e-voting scheme based on an existing scheme. Our scheme features an efficient location anonymization technique built on homomorphic encryption. This technique does not require any participation from the voter other than receiving and summing location shares. Moreover, our scheme is simplified and offers more protection against misbehaving parties. We also give an in-depth security analysis, present performance results, compare our scheme with existing schemes, and describe how our research can be used to enhance cybersecurity education.Item Energy-Efficient Device Selection in Federated Edge Learning(IEEE, 2021-07) Peng, Cheng; Hu, Qin; Chen, Jianan; Kang, Kyubyung; Li, Feng; Zou, Xukai; Computer and Information Science, School of ScienceDue to the increasing demand from mobile devices for the real-time response of cloud computing services, federated edge learning (FEL) emerges as a new computing paradigm, which utilizes edge devices to achieve efficient machine learning while protecting their data privacy. Implementing efficient FEL suffers from the challenges of devices’ limited computing and communication resources, as well as unevenly distributed datasets, which inspires several existing research focusing on device selection to optimize time consumption and data diversity. However, these studies fail to consider the energy consumption of edge devices given their limited power supply, which can seriously affect the cost-efficiency of FEL with unexpected device dropouts. To fill this gap, we propose a device selection model capturing both energy consumption and data diversity optimization, under the constraints of time consumption and training data amount. Then we solve the optimization problem by reformulating the original model and designing a novel algorithm, named E2DS, to reduce the time complexity greatly. By comparing with two classical FEL schemes, we validate the superiority of our proposed device selection mechanism for FEL with extensive experimental results.Item A game theoretic analysis on block withholding attacks using the zero-determinant strategy(ACM, 2019-06) Hu, Qin; Wang, Shengling; Cheng, Xiuzhen; Computer and Information Science, School of ScienceIn Bitcoin's incentive system that supports open mining pools, block withholding attacks incur huge security threats. In this paper, we investigate the mutual attacks among pools as this determines the macroscopic utility of the whole distributed system. Existing studies on pools' interactive attacks usually employ the conventional game theory, where the strategies of the players are considered pure and equal, neglecting the existence of powerful strategies and the corresponding favorable game results. In this study, we take advantage of the Zero-Determinant (ZD) strategy to analyze the block withholding attack between any two pools, where the ZD adopter has the unilateral control on the expected payoffs of its opponent and itself. In this case, we are faced with the following questions: who can adopt the ZD strategy? individually or simultaneously? what can the ZD player achieve? In order to answer these questions, we derive the conditions under which two pools can individually or simultaneously employ the ZD strategy and demonstrate the effectiveness. To the best of our knowledge, we are the first to use the ZD strategy to analyze the block withholding attack among pools.