- Browse by Author
Browsing by Author "Hu, Bo"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item A Between-Sex Comparison of the Genomic Architecture of Asthma(American Thoracic Society, 2023) Zein, Joe G.; Bazeley, Peter; Meyers, Deborah; Bleecker, Eugene; Gaston, Benjamin; Hu, Bo; Attaway, Amy; Ortega, Victor; Pediatrics, School of MedicineItem Clinical Characteristics and Transplant-Free Survival Across the Spectrum of Pulmonary Vascular Disease(Elsevier, 2022) Hemnes, Anna R.; Leopold, Jane A.; Radeva, Milena K.; Beck, Gerald J.; Abidov, Aiden; Aldred, Micheala A.; Barnard, John; Rosenzweig, Erika B.; Borlaug, Barry A.; Chung, Wendy K.; Comhair, Suzy A. A.; Desai, Ankit A.; Dubrock, Hilary M.; Erzurum, Serpil C.; Finet, J. Emanuel; Frantz, Robert P.; Garcia, Joe G. N.; Geraci, Mark W.; Gray, Michael P.; Grunig, Gabriele; Hassoun, Paul M.; Highland, Kristin B.; Hill, Nicholas S.; Hu, Bo; Kwon, Deborah H.; Jacob, Miriam S.; Jellis, Christine L.; Larive, A. Brett; Lempel, Jason K.; Maron, Bradley A.; Mathai, Stephen C.; McCarthy, Kevin; Mehra, Reena; Nawabit, Rawan; Newman, John H.; Olman, Mitchell A.; Park, Margaret M.; Ramos, Jose A.; Renapurkar, Rahul D.; Rischard, Franz P.; Sherer, Susan G.; Tang, W. H. Wilson; Thomas, James D.; Vanderpool, Rebecca R.; Waxman, Aaron B.; Wilcox, Jennifer D.; Yuan, Jason X-J; Horn, Evelyn M.; PVDOMICS Study Group; Medicine, School of MedicineBackground: PVDOMICS (Pulmonary Vascular Disease Phenomics) is a precision medicine initiative to characterize pulmonary vascular disease (PVD) using deep phenotyping. PVDOMICS tests the hypothesis that integration of clinical metrics with omic measures will enhance understanding of PVD and facilitate an updated PVD classification. Objectives: The purpose of this study was to describe clinical characteristics and transplant-free survival in the PVDOMICS cohort. Methods: Subjects with World Symposium Pulmonary Hypertension (WSPH) group 1-5 PH, disease comparators with similar underlying diseases and mild or no PH and healthy control subjects enrolled in a cross-sectional study. PH groups, comparators were compared using standard statistical tests including log-rank tests for comparing time to transplant or death. Results: A total of 1,193 subjects were included. Multiple WSPH groups were identified in 38.9% of PH subjects. Nocturnal desaturation was more frequently observed in groups 1, 3, and 4 PH vs comparators. A total of 50.2% of group 1 PH subjects had ground glass opacities on chest computed tomography. Diffusing capacity for carbon monoxide was significantly lower in groups 1-3 PH than their respective comparators. Right atrial volume index was higher in WSPH groups 1-4 than comparators. A total of 110 participants had a mean pulmonary artery pressure of 21-24 mm Hg. Transplant-free survival was poorest in group 3 PH. Conclusions: PVDOMICS enrolled subjects across the spectrum of PVD, including mild and mixed etiology PH. Novel findings include low diffusing capacity for carbon monoxide and enlarged right atrial volume index as shared features of groups 1-3 and 1-4 PH, respectively; unexpected, frequent presence of ground glass opacities on computed tomography; and sleep alterations in group 1 PH, and poorest survival in group 3 PH. PVDOMICS will facilitate a new understanding of PVD and refine the current PVD classification.Item Comparison of whole genome sequencing and targeted sequencing for mitochondrial DNA(Elsevier, 2021) Chen, Ruoying; Aldred, Micheala A.; Xu, Weiling; Zein, Joe; Bazeley, Peter; Comhai, Suzy A. A.; Meyers, Deborah A.; Bleecker, Eugene R.; Liu, Chunyu; Erzurum, Serpil C.; Hu, Bo; NHLBI Severe Asthma Research Program (SARP); Medicine, School of MedicineMitochondrial dysfunction has emerged to be associated with a broad spectrum of diseases, and there is an increasing demand for accurate detection of mitochondrial DNA (mtDNA) variants. Whole genome sequencing (WGS) has been the dominant sequencing approach to identify genetic variants in recent decades, but most studies focus on variants on the nuclear genome. Whole genome sequencing is also costly and time consuming. Sequencing specifically targeted for mtDNA is commonly used in the diagnostic settings and has lower costs. However, there is a lack of pairwise comparisons between these two sequencing approaches for calling mtDNA variants on a population basis. In this study, we compared WGS and mtDNA-targeted sequencing (targeted-seq) in analyzing mitochondrial DNA from 1499 participants recruited into the Severe Asthma Research Program (SARP). Our study reveals that targeted-sequencing and WGS have comparable capacity to determine genotypes and to call haplogroups and homoplasmies on mtDNA. However, there exists a large variability in calling heteroplasmies, especially for low-frequency heteroplasmies, which indicates that investigators should be cautious about heteroplasmies acquired from different sequencing methods. Further research is highly desired to improve variant detection methods for mitochondrial DNA.Item Genetic and environment effects on structural neuroimaging endophenotype for bipolar disorder: a novel molecular approach(Springer Nature, 2022-04-04) Hu, Bo; Cha, Jungwon; Fullerton, Janice M.; Hesam-Shariati, Sonia; Nakamura, Kunio; Nurnberger, John I.; Anand, Amit; Psychiatry, School of MedicineWe investigated gene-environment effects on structural brain endophenotype in bipolar disorder (BD) using a novel method of combining polygenic risk scores with epigenetic signatures since traditional methods of examining the family history and trauma effects have significant limitations. The study enrolled 119 subjects, including 55 BD spectrum (BDS) subjects diagnosed with BD or major depressive disorder (MDD) with subthreshold BD symptoms and 64 non-BDS subjects comprising 32 MDD subjects without BD symptoms and 32 healthy subjects. The blood samples underwent genome-wide genotyping and methylation quantification. We derived polygenic risk score (PRS) and methylation profile score (MPS) as weighted summations of risk single nucleotide polymorphisms and methylation probes, respectively, which were considered as molecular measures of genetic and environmental risks for BD. Linear regression was used to relate PRS, MPS, and their interaction to 44 brain structure measures quantified from magnetic resonance imaging (MRI) on 47 BDS subjects, and the results were compared with those based on family history and childhood trauma. After multiplicity corrections using false discovery rate (FDR), MPS was found to be negatively associated with the volume of the medial geniculate thalamus (FDR = 0.059, partial R2 = 0.208). Family history, trauma scale, and PRS were not associated with any brain measures. PRS and MPS show significant interactions on whole putamen (FDR = 0.09, partial R2 = 0.337). No significant gene-environment interactions were identified for the family history and trauma scale. PRS and MPS generally explained greater proportions of variances of the brain measures (range of partial R2 = [0.008, 0.337]) than the clinical risk factors (range = [0.004, 0.228]).Item Mitochondrial DNA Copy Number Variation in Asthma Risk, Severity, and Exacerbations(medRxiv, 2023-12-05) Xu, Weiling; Hong, Yun Soo; Hu, Bo; Comhair, Suzy A. A.; Janocha, Allison J.; Zein, Joe G.; Chen, Ruoying; Meyers, Deborah A.; Mauger, David T.; Ortega, Victor E.; Bleecker, Eugene R.; Castro, Mario; Denlinger, Loren C.; Fahy, John V.; Israel, Elliot; Levy, Bruce D.; Jarjour, Nizar N.; Moore, Wendy C.; Wenzel, Sally E.; Gaston, Benjamin; Liu, Chunyu; Arking, Dan E.; Erzurum, Serpil C.; National Heart, Lung, and Blood Institute (NHLBI) Severe Asthma Research Program (SARP) and TOPMed mtDNA Working Group in NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; Pediatrics, School of MedicineRationale: Although airway oxidative stress and inflammation are central to asthma pathogenesis, there is limited knowledge of the relationship of asthma risk, severity, or exacerbations to mitochondrial dysfunction, which is pivotal to oxidant generation and inflammation. Objectives: We investigated whether mitochondrial DNA copy number (mtDNA-CN) as a measure of mitochondrial function is associated with asthma diagnosis, severity, oxidative stress, and exacerbations. Methods: We measured mtDNA-CN in blood in two cohorts. In the UK Biobank (UKB), we compared mtDNA-CN in mild and moderate-severe asthmatics to non-asthmatics. In the Severe Asthma Research Program (SARP), we evaluated mtDNA-CN in relation to asthma severity, biomarkers of oxidative stress and inflammation, and exacerbations. Measures and main results: In UK Biobank, asthmatics (n = 29,768) have lower mtDNA-CN compared to non-asthmatics (n = 239,158) (beta, -0.026 [95% CI, -0.038 to -0.014], P = 2.46×10-5). While lower mtDNA-CN is associated with asthma, mtDNA-CN did not differ by asthma severity in either UKB or SARP. Biomarkers of inflammation show that asthmatics have higher white blood cells (WBC), neutrophils, eosinophils, fraction exhaled nitric oxide (FENO), and lower superoxide dismutase (SOD) than non-asthmatics, confirming greater oxidative stress in asthma. In one year follow-up in SARP, higher mtDNA-CN is associated with reduced risk of three or more exacerbations in the subsequent year (OR 0.352 [95% CI, 0.164 to 0.753], P = 0.007). Conclusions: Asthma is characterized by mitochondrial dysfunction. Higher mtDNA-CN identifies an exacerbation-resistant asthma phenotype, suggesting mitochondrial function is important in exacerbation risk.Item MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma(Elsevier, 2017-12-11) Huang, Tianzhi; Kim, Chung Kwon; Alvarez, Angel A.; Pangeni, Rajendra P.; Wan, Xuechao; Song, Xiao; Shi, Taiping; Yang, Yongyong; Sastry, Namratha; Horbinski, Craig M.; Lu, Songjian; Stupp, Roger; Kessler, John A.; Nishikawa, Ryo; Nakano, Ichiro; Sulman, Erik P.; Lu, Xinghua; James, Charles David; Yin, Xiao-Ming; Hu, Bo; Cheng, Shi-Yuan; Pathology and Laboratory Medicine, School of MedicineATG4B stimulates autophagy by promoting autophagosome formation through reversible modification of ATG8. We identify ATG4B as a substrate of mammalian sterile20-like kinase (STK) 26/MST4. MST4 phosphorylates ATG4B at serine residue 383, which stimulates ATG4B activity and increases autophagic flux. Inhibition of MST4 or ATG4B activities using genetic approaches or an inhibitor of ATG4B suppresses autophagy and the tumorigenicity of glioblastoma (GBM) cells. Furthermore, radiation induces MST4 expression, ATG4B phosphorylation, and autophagy. Inhibiting ATG4B in combination with radiotherapy in treating mice with intracranial GBM xenograft markedly slows tumor growth and provides a significant survival benefit. Our work describes an MST4-ATG4B signaling axis that influences GBM autophagy and malignancy, and whose therapeutic targeting enhances the anti-tumor effects of radiotherapy., • MST4 kinase regulates the growth, sphere formation, and tumorigenicity of GBM cells • MST4 stimulates autophagy by activating ATG4B through phosphorylation of ATG4B S383 • Radiation increases MST4 expression and ATG4B phosphorylation, inducing autophagy • Inhibiting ATG4B enhances the anti-tumor effects of radiotherapy in GBM PDX models , Huang et al. show that radiation induces MST4 expression and that MST4 phosphorylates ATG4B at serine 383, which increases ATG4B activity and autophagic flux. Inhibition of ATG4B reduces autophagy and tumorigenicity of glioblastoma (GBM) cells and improves the impact of radiotherapy on GBM growth in mice.Item Reducing decisional conflict in decisions about prenatal genetic testing: the impact of a dyadic intervention at the start of prenatal care(De Gruyter, 2024-04-29) Collart, Christina; Craighead, Caitlin; Yao, Meng; Rose, Susannah; Chien, Edward K.; Frankel, Richard M.; Coleridge, Marissa; Hu, Bo; Tucker Edmonds, Brownsyne; Ranzini, Angela C.; Farrell, Ruth M.; Obstetrics and Gynecology, School of MedicineObjectives: Decisional conflict and regret about prenatal genetic screening and diagnostic tests may have important consequences in the current pregnancy and for future reproductive decisions. Identifying mechanisms that reduce conflict associated with the decision to use or decline these options is necessary for optimal patient counseling. Methods: We conducted a cluster-randomized controlled trial of a shared decision-making tool (NEST) at the beginning of prenatal care. Enrolled patients completed follow-up surveys at the time of testing (QTT) and in the second-third trimester (QFF), including the Decision Conflict Scale (DCS). Total DCS scores were analyzed using a multivariate linear mixed-effect model. Results: Of the total number of participants (n=502) enrolled, 449 completed the QTT and QFF surveys. The mean age of participants was 31.6±3.8, with most parous at the time of study participation (n=321; 71.7 %). Both the NEST (the intervention) and control groups had lower median total DCS scores at QFF (NEST 13.3 [1.7, 25.0] vs. control 16.7 [1.7, 25.0]; p=0.24) compared to QTT (NEST 20.8 [5.0, 25.0] vs. control 18.3 [3.3, 26.7]; p=0.89). Participants exposed to NEST had lower decisional conflict at QFF compared to control (β -3.889; [CI -7.341, -0.437]; p=0.027). Conclusions: Using a shared decision-making tool at the start of prenatal care decreased decisional conflict regarding prenatal genetic testing. Such interventions have the potential to provide an important form of decision-making support for patients facing the unique type of complex and preference-based choices about the use of prenatal genetic tests.