- Browse by Author
Browsing by Author "Howell, Lauren A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The Cdc48 Complex Alleviates the Cytotoxicity of Misfolded Proteins by Regulating Ubiquitin Homeostasis(Elsevier, 2020-07-14) Higgins, Ryan; Kabbaj, Marie-Helene; Sherwin, Delaney; Howell, Lauren A.; Hatcher, Alexa; Tomko, Robert J.; Wang, Yanchang; Pathology and Laboratory Medicine, School of MedicineThe accumulation of misfolded proteins is associated with multiple neurodegenerative disorders, but it remains poorly defined how this accumulation causes cytotoxicity. Here, we demonstrate that the Cdc48/p97 segregase machinery drives the clearance of ubiquitinated model misfolded protein Huntingtin (Htt103QP) and limits its aggregation. Nuclear ubiquitin ligase San1 acts upstream of Cdc48 to ubiquitinate Htt103QP. Unexpectedly, deletion of SAN1 and/or its cytosolic counterpart UBR1 rescues the toxicity associated with Cdc48 deficiency, suggesting that ubiquitin depletion, rather than compromised proteolysis of misfolded proteins, causes the growth defect in cells with Cdc48 deficiency. Indeed, Cdc48 deficiency leads to elevated protein ubiquitination levels and decreased free ubiquitin, which depends on San1/Ubr1. Furthermore, enhancing free ubiquitin levels rescues the toxicity in various Cdc48 pathway mutants and restores normal turnover of a known Cdc48-independent substrate. Our work highlights a previously unappreciated function for Cdc48 in ensuring the regeneration of monoubiquitin that is critical for normal cellular function.Item Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis(Springer, 2017-02) Howell, Lauren A.; Tomko, Robert J., Jr.; Kusmierczyk, Andrew R.; Biology, School of ScienceBackground The 26S proteasome is at the heart of the ubiquitin-proteasome system, which is the key cellular pathway for the regulated degradation of proteins and enforcement of protein quality control. The 26S proteasome is an unusually large and complicated protease comprising a 28-subunit core particle (CP) capped by one or two 19-subunit regulatory particles (RP). Multiple activities within the RP process incoming ubiquitinated substrates for eventual degradation by the barrel-shaped CP. The large size and elaborate architecture of the proteasome have made it an exceptional model for understanding mechanistic themes in macromolecular assembly. Objective In the present work, we highlight the most recent mechanistic insights into proteasome assembly, with particular emphasis on intrinsic and extrinsic factors regulating proteasome biogenesis. We also describe new and exciting questions arising about how proteasome assembly is regulated and deregulated in normal and diseased cells. Methods A comprehensive literature search using the PubMed search engine was performed, and key findings yielding mechanistic insight into proteasome assembly were included in this review. Results Key recent studies have revealed that proteasome biogenesis is dependent upon intrinsic features of the subunits themselves as well as extrinsic factors, many of which function as dedicated chaperones. Conclusion Cells rely on a diverse set of mechanistic strategies to ensure the rapid, efficient, and faithful assembly of proteasomes from their cognate subunits. Importantly, physiological as well as pathological changes to proteasome assembly are emerging as exciting paradigms to alter protein degradation in vivo.