- Browse by Author
Browsing by Author "Howe, Erin N."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item CNS-Native Myeloid Cells Drive Immune Suppression in the Brain Metastatic Niche through Cxcl10(Cell Press, 2020) Guldner, Ian H.; Wang, Qingfei; Yang, Lin; Golomb, Samantha M.; Zhao, Zhuo; Lopez, Jacqueline A.; Brunory, Abigail; Howe, Erin N.; Zhang, Yizhe; Palakurthi, Bhavana; Barron, Martin; Gao, Hongyu; Xuei, Xiaoling; Liu, Yunlong; Li, Jun; Chen, Danny Z.; Landreth, Gary E.; Zhang, Siyuan; Medical and Molecular Genetics, School of MedicineBrain metastasis (br-met) develops in an immunologically unique br-met niche. Central nervous system-native myeloid cells (CNS-myeloids) and bone-marrow-derived myeloid cells (BMDMs) cooperatively regulate brain immunity. The phenotypic heterogeneity and specific roles of these myeloid subsets in shaping the br-met niche to regulate br-met outgrowth have not been fully revealed. Applying multimodal single-cell analyses, we elucidated a heterogeneous but spatially defined CNS-myeloid response during br-met outgrowth. We found Ccr2+ BMDMs minimally influenced br-met while CNS-myeloid promoted br-met outgrowth. Additionally, br-met-associated CNS-myeloid exhibited downregulation of Cx3cr1. Cx3cr1 knockout in CNS-myeloid increased br-met incidence, leading to an enriched interferon response signature and Cxcl10 upregulation. Significantly, neutralization of Cxcl10 reduced br-met, while rCxcl10 increased br-met and recruited VISTAHi PD-L1+ CNS-myeloid to br-met lesions. Inhibiting VISTA- and PD-L1-signaling relieved immune suppression and reduced br-met burden. Our results demonstrate that loss of Cx3cr1 in CNS-myeloid triggers a Cxcl10-mediated vicious cycle, cultivating a br-met-promoting, immune-suppressive niche.Item Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer(Springer Nature, 2019-06-28) Ni, Yingjia; Schmidt, Keon R.; Werner, Barnes A.; Koenig, Jenna K.; Guldner, Ian H.; Schnepp, Patricia M.; Tan, Xuejuan; Jiang, Lan; Host, Misha; Sun, Longhua; Howe, Erin N.; Wu, Junmin; Littlepage, Laurie E.; Nakshatri, Harikrishna; Zhang, Siyuan; Surgery, IU School of MedicineLacking targetable molecular drivers, triple-negative breast cancer (TNBC) is the most clinically challenging subtype of breast cancer. In this study, we reveal that Death Effector Domain-containing DNA-binding protein (DEDD), which is overexpressed in > 60% of TNBCs, drives a mitogen-independent G1/S cell cycle transition through cytoplasm localization. The gain of cytosolic DEDD enhances cyclin D1 expression by interacting with heat shock 71 kDa protein 8 (HSC70). Concurrently, DEDD interacts with Rb family proteins and promotes their proteasome-mediated degradation. DEDD overexpression renders TNBCs vulnerable to cell cycle inhibition. Patients with TNBC have been excluded from CDK 4/6 inhibitor clinical trials due to the perceived high frequency of Rb-loss in TNBCs. Interestingly, our study demonstrated that, irrespective of Rb status, TNBCs with DEDD overexpression exhibit a DEDD-dependent vulnerability to combinatorial treatment with CDK4/6 inhibitor and EGFR inhibitor in vitro and in vivo. Thus, our study provided a rationale for the clinical application of CDK4/6 inhibitor combinatorial regimens for patients with TNBC.Item GAD1 Upregulation Programs Aggressive Features of Cancer Cell Metabolism in the Brain Metastatic Microenvironment(American Association for Cancer Research, 2017-06-01) Schnepp, Patricia M.; Lee, Dennis D.; Guldner, Ian H.; O'Tighearnaigh, Treasa K.; Howe, Erin N.; Palakurthi, Bhavana; Eckert, Kaitlyn E.; Toni, Tiffany A.; Ashfeld, Brandon L.; Zhang, Siyuan; Medicine, School of MedicineThe impact of altered amino acid metabolism on cancer progression is not fully understood. We hypothesized that a metabolic transcriptome shift during metastatic evolution is crucial for brain metastasis. Here, we report a powerful impact in this setting caused by epigenetic upregulation of glutamate decarboxylase 1 (GAD1), a regulator of the GABA neurotransmitter metabolic pathway. In cell-based culture and brain metastasis models, we found that downregulation of the DNA methyltransferase DNMT1 induced by the brain microenvironment-derived clusterin resulted in decreased GAD1 promoter methylation and subsequent upregulation of GAD1 expression in brain metastatic tumor cells. In a system to dynamically visualize cellular metabolic responses mediated by GAD1, we monitored the cytosolic NADH:NAD+ equilibrium in tumor cells. Reducing GAD1 in metastatic cells by primary glia cell coculture abolished the capacity of metastatic cells to utilize extracellular glutamine, leading to cytosolic accumulation of NADH and increased oxidative status. Similarly, genetic or pharmacologic disruption of the GABA metabolic pathway decreased the incidence of brain metastasis in vivo Taken together, our results show how epigenetic changes in GAD1 expression alter local glutamate metabolism in the brain metastatic microenvironment, contributing to a metabolic adaption that facilitates metastasis outgrowth in that setting.Item Targeting CXCL16 and STAT1 augments immune checkpoint blockade therapy in triple-negative breast cancer(Springer Nature, 2023-04-13) Palakurthi, Bhavana; Fross, Shaneann R.; Guldner, Ian H.; Aleksandrovic, Emilija; Liu, Xiyu; Martino, Anna K.; Wang, Qingfei; Neff, Ryan A.; Golomb, Samantha M.; Lewis, Cheryl; Peng, Yan; Howe, Erin N.; Zhang, Siyuan; Biochemistry and Molecular Biology, School of MedicineChemotherapy prior to immune checkpoint blockade (ICB) treatment appears to improve ICB efficacy but resistance to ICB remains a clinical challenge and is attributed to highly plastic myeloid cells associating with the tumor immune microenvironment (TIME). Here we show by CITE-seq single-cell transcriptomic and trajectory analyses that neoadjuvant low-dose metronomic chemotherapy (MCT) leads to a characteristic co-evolution of divergent myeloid cell subsets in female triple-negative breast cancer (TNBC). Specifically, we identify that the proportion of CXCL16 + myeloid cells increase and a high STAT1 regulon activity distinguishes Programmed Death Ligand 1 (PD-L1) expressing immature myeloid cells. Chemical inhibition of STAT1 signaling in MCT-primed breast cancer sensitizes TNBC to ICB treatment, which underscores the STAT1’s role in modulating TIME. In summary, we leverage single-cell analyses to dissect the cellular dynamics in the tumor microenvironment (TME) following neoadjuvant chemotherapy and provide a pre-clinical rationale for modulating STAT1 in combination with anti-PD-1 for TNBC patients.