- Browse by Author
Browsing by Author "Howard, Scott S."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Automatic segmentation of intravital fluorescence microscopy images by K-means clustering of FLIM phasors(OSA, 2019-08) Zhang, Yide; Hato, Takashi; Dagher, Pierre C.; Nichols, Evan L.; Smith, Cody J.; Dunn, Kenneth W.; Howard, Scott S.; Medicine, School of MedicineFluorescence lifetime imaging microscopy (FLIM) provides additional contrast for fluorophores with overlapping emission spectra. The phasor approach to FLIM greatly reduces the complexity of FLIM analysis and enables a useful image segmentation technique by selecting adjacent phasor points and labeling their corresponding pixels with different colors. This phasor labeling process, however, is empirical and could lead to biased results. In this Letter, we present a novel and unbiased approach to automate the phasor labeling process using an unsupervised machine learning technique, i.e., K-means clustering. In addition, we provide an open-source, user-friendly program that enables users to easily employ the proposed approach. We demonstrate successful image segmentation on 2D and 3D FLIM images of fixed cells and living animals acquired with two different FLIM systems. Finally, we evaluate how different parameters affect the segmentation result and provide a guideline for users to achieve optimal performance.Item Generating intravital super-resolution movies with conventional microscopy reveals actin dynamics that construct pioneer axons(The Company of Biologists, 2019-03-08) Zhang, Yide; Nichols, Evan L.; Zellmer, Abigail M.; Guldner, Ian H.; Kankel, Cody; Zhang, Siyuan; Howard, Scott S.; Smith, Cody J.; Medicine, School of MedicineSuper-resolution microscopy is broadening our in-depth understanding of cellular structure. However, super-resolution approaches are limited, for numerous reasons, from utilization in longer-term intravital imaging. We devised a combinatorial imaging technique that combines deconvolution with stepwise optical saturation microscopy (DeSOS) to circumvent this issue and image cells in their native physiological environment. Other than a traditional confocal or two-photon microscope, this approach requires no additional hardware. Here, we provide an open-access application to obtain DeSOS images from conventional microscope images obtained at low excitation powers. We show that DeSOS can be used in time-lapse imaging to generate super-resolution movies in zebrafish. DeSOS was also validated in live mice. These movies uncover that actin structures dynamically remodel to produce a single pioneer axon in a 'top-down' scaffolding event. Further, we identify an F-actin population - stable base clusters - that orchestrate that scaffolding event. We then identify that activation of Rac1 in pioneer axons destabilizes stable base clusters and disrupts pioneer axon formation. The ease of acquisition and processing with this approach provides a universal technique for biologists to answer questions in living animals.Item Instant FLIM enables 4D in vivo lifetime imaging of intact and injured zebrafish and mouse brains(Optica, 2021) Zhang, Yide; Guldner, Ian H.; Nichols, Evan L.; Benirschke, David; Smith, Cody J.; Zhang, Siyuan; Howard, Scott S.; Medicine, School of MedicineTraditional fluorescence microscopy is blind to molecular microenvironment information that is present in fluorescence lifetime, which can be measured by fluorescence lifetime imaging microscopy (FLIM). However, most existing FLIM techniques are slow to acquire and process lifetime images, difficult to implement, and expensive. Here, we present instant FLIM, an analog signal processing method that allows real-time streaming of fluorescence intensity, lifetime, and phasor imaging data through simultaneous image acquisition and instantaneous data processing. Instant FLIM can be easily implemented by upgrading an existing two-photon microscope using cost-effective components and our open-source software. We further improve the functionality, penetration depth, and resolution of instant FLIM using phasor segmentation, adaptive optics, and super-resolution techniques. We demonstrate through-skull intravital 3D FLIM of mouse brains to depths of 300 μm and present the first in vivo 4D FLIM of microglial dynamics in intact and injured zebrafish and mouse brains up to 12 hours.Item Skeletal cell YAP and TAZ combinatorially promote bone development(Federation of American Societies for Experimental Biology, 2018-05) Kegelman, Christopher D.; Mason, Devon E.; Dawahare, James H.; Horan, Daniel J.; Vigil, Genevieve D.; Howard, Scott S.; Robling, Alexander G.; Bellido, Teresita M.; Boerckel, Joel D.; Anatomy and Cell Biology, IU School of MedicineThe functions of the paralogous transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in bone are controversial. Each has been observed to promote or inhibit osteogenesis in vitro, with reports of both equivalent and divergent functions. Their combinatorial roles in bone physiology are unknown. We report that combinatorial YAP/TAZ deletion from skeletal lineage cells, using Osterix-Cre, caused an osteogenesis imperfecta-like phenotype with severity dependent on allele dose and greater phenotypic expressivity with homozygous TAZ vs. YAP ablation. YAP/TAZ deletion decreased bone accrual and reduced intrinsic bone material properties through impaired collagen content and organization. These structural and material defects produced spontaneous fractures, particularly in mice with homozygous TAZ deletion and caused neonatal lethality in dual homozygous knockouts. At the cellular level in vivo, YAP/TAZ ablation reduced osteoblast activity and increased osteoclast activity, in an allele dose-dependent manner, impairing bone accrual and remodeling. Transcriptionally, YAP/TAZ deletion and small-molecule inhibition of YAP/TAZ interaction with the transcriptional coeffector TEAD reduced osteogenic and collagen-related gene expression, both in vivo and in vitro. These data demonstrate that YAP and TAZ combinatorially promote bone development through regulation of osteoblast activity, matrix quality, and osteoclastic remodeling.-Kegelman, C. D., Mason, D. E., Dawahare, J. H., Horan, D. J., Vigil, G. D., Howard, S. S., Robling, A. G., Bellido, T. M., Boerckel, J. D. Skeletal cell YAP and TAZ combinatorially promote bone development.