ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hou, Jiancheng"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Association of Frequent Sexual Choking/Strangulation With Neurophysiological Responses: A Pilot Resting-State fMRI Study
    (Mary Ann Liebert, 2023) Hou, Jiancheng; Huibregtse, Megan E.; Alexander, Isabella L.; Klemsz, Lillian M.; Fu, Tsung-Chieh; Fortenberry, J. Dennis; Herbenick, Debby; Kawata, Keisuke; Pediatrics, School of Medicine
    Being choked or strangled during partnered sex is an emerging sexual behavior, prevalent among young adult women. The goal of this study was to test whether, and to what extent, frequently being choked or strangled during sex is associated with cortical surface functioning and functional connectivity. This case-control study consisted of two groups (choking vs. choking-naïve). Women who were choked 4 or more times during sex in the past 30 days were enrolled into the choking group, whereas those without were assigned to the choking-naïve group. We collected structural and resting-state functional magnetic resonance imaging (fMRI) data and analyzed the data for amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) using cortical surface-based resting-state fMRI analysis, followed by static and dynamic resting-state fMRI connectivity analysis. Forty-one participants (choking n = 20; choking-n-aïve n = 21) contributed to the analysis. An inter-hemispheric imbalance in neuronal activation pattern was observed in the choking group. Specifically, we observed significantly lower ALFF and ReHo in the left cortical regions (e.g., angular gyrus, orbitofrontal gyrus) and higher ALFF and ReHo in the right cortical regions (e.g., pre-central/post-central gyri) in the choking group compared with the choking-naïve group. A significant group difference was found in static functional connectivity between the bilateral angular gyrus and the whole brain, in which the choking group's angular gyrus showed hyperconnectivity with, for example, the post-central gyrus, pre-central gyrus, and Rolandic operculum, relative to the choking-naïve group. The dynamic analysis revealed hyperconnectivity between the left angular gyrus and the bilateral postcentral gyrus in the choking group compared with the choking-naïve group. Taken together, our data show that multiple experiences of sexual choking/strangulation are associated with an inter-hemispheric imbalance in neural activation pattern and hyperconnectivity between the angular gyrus and brain regions related to motor control, consciousness, and emotion. A longitudinal study using multi-modal neurological assessments is needed to clarify the acute and chronic consequences of sexual choking/strangulation.
  • Loading...
    Thumbnail Image
    Item
    Cerebral Cortical Surface Structure and Neural Activation Pattern Among Adolescent Football Players
    (American Medical Association, 2024-02-05) Zuidema, Taylor R.; Hou, Jiancheng; Kercher, Kyle A.; Recht, Grace O.; Sweeney, Sage H.; Chenchaiah, Nishant; Cheng, Hu; Steinfeldt, Jesse A.; Kawata, Keisuke; Pediatrics, School of Medicine
    Importance: Recurring exposure to head impacts in American football has garnered public and scientific attention, yet neurobiological associations in adolescent football players remain unclear. Objective: To examine cortical structure and neurophysiological characteristics in adolescent football players. Design, setting, and participants: This cohort study included adolescent football players and control athletes (swimming, cross country, and tennis) from 5 high school athletic programs, who were matched with age, sex (male), and school. Neuroimaging assessments were conducted May to July of the 2021 and 2022 seasons. Data were analyzed from February to November 2023. Exposure: Playing tackle football or noncontact sports. Main outcomes and measures: Structural magnetic resonance imaging (MRI) data were analyzed for cortical thickness, sulcal depth, and gyrification, and cortical surface-based resting state (RS)-functional MRI analyses examined the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and RS-functional connectivity (RS-FC). Results: Two-hundred seventy-five male participants (205 football players; mean [SD] age, 15.8 [1.2] years; 5 Asian [2.4%], 8 Black or African American [3.9%], and 189 White [92.2%]; 70 control participants; mean [SD] age 15.8 [1.2] years, 4 Asian [5.7], 1 Black or African American [1.4%], and 64 White [91.5%]) were included in this study. Relative to the control group, the football group showed significant cortical thinning, especially in fronto-occipital regions (eg, right precentral gyrus: t = -2.24; P = .01; left superior frontal gyrus: -2.42; P = .002). Elevated cortical thickness in football players was observed in the anterior and posterior cingulate cortex (eg, left posterior cingulate cortex: t = 2.28; P = .01; right caudal anterior cingulate cortex 3.01; P = .001). The football group had greater and deeper sulcal depth than the control groups in the cingulate cortex, precuneus, and precentral gyrus (eg, right inferior parietal lobule: t = 2.20; P = .004; right caudal anterior cingulate cortex: 4.30; P < .001). Significantly lower ALFF was detected in the frontal lobe and cingulate cortex of the football group (t = -3.66 to -4.92; P < .01), whereas elevated ALFF was observed in the occipital regions (calcarine and lingual gyrus, t = 3.20; P < .01). Similar to ALFF, football players exhibited lower ReHo in the precentral gyrus and medial aspects of the brain, such as precuneus, insula, and cingulum, whereas elevated ReHo was clustered in the occipitotemporal regions (t = 3.17; P < .001; to 4.32; P < .01). There was no group difference in RS-FC measures. Conclusions and relevance: In this study of adolescent athletes, there was evidence of discernible structural and physiological differences in the brains of adolescent football players compared with their noncontact controls. Many of the affected brain regions were associated with mental health well-being.
  • Loading...
    Thumbnail Image
    Item
    Multiparameter cortical surface morphology in former amateur contact sport athletes
    (Oxford University Press, 2024) Recht, Grace; Hou, Jiancheng; Buddenbaum, Claire; Cheng, Hu; Newman, Sharlene D.; Saykin, Andrew J.; Kawata, Keisuke; Radiology and Imaging Sciences, School of Medicine
    The lifetime effects of repetitive head impacts have captured considerable public and scientific interest over the past decade, yet a knowledge gap persists in our understanding of midlife neurological well-being, particularly in amateur level athletes. This study aimed to identify the effects of lifetime exposure to sports-related head impacts on brain morphology in retired, amateur athletes. This cross-sectional study comprised of 37 former amateur contact sports athletes and 21 age- and sex-matched noncontact athletes. High-resolution anatomical, T1 scans were analyzed for the cortical morphology, including cortical thickness, sulcal depth, and sulcal curvature, and cognitive function was assessed using the Dementia Rating Scale-2. Despite no group differences in cognitive functions, the contact group exhibited significant cortical thinning particularly in the bilateral frontotemporal regions and medial brain regions, such as the cingulate cortex and precuneus, compared to the noncontact group. Deepened sulcal depth and increased sulcal curvature across all four lobes of the brain were also notable in the contact group. These data suggest that brain morphology of middle-aged former amateur contact athletes differs from that of noncontact athletes and that lifetime exposure to repetitive head impacts may be associated with neuroanatomical changes.
  • Loading...
    Thumbnail Image
    Item
    Structural brain morphology in young adult women who have been choked/strangled during sex: A whole‐brain surface morphometry study
    (Wiley, 2023) Hou, Jiancheng; Huibregtse, Megan E.; Alexander, Isabella L.; Klemsz, Lillian M.; Fu, Tsung-Chieh; Rosenberg, Molly; Fortenberry, James Dennis; Herbenick, Debby; Kawata, Keisuke; Pediatrics, School of Medicine
    Introduction: Being choked/strangled during partnered sex is an emerging sexual behavior, particularly prevalent among young adult women. Using a multiparameter morphometric imaging approach, we aimed to characterize neuroanatomical differences between young adult women (18-30 years old) who were exposed to frequent sexual choking and their choking naïve controls. Methods: This cross-sectional study consisted of two groups (choking [≥4 times in the past 30 days] vs. choking-naïve group). Participants who reported being choked four or more times during sex in the past 30 days were enrolled in the choking group, whereas those without were assigned to the choking naïve group. High-resolution anatomical magnetic resonance imaging (MRI) data were analyzed using both volumetric features (cortical thickness) and geometric features (fractal dimensionality, gyrification, sulcal depth). Results: Forty-one participants (choking n = 20; choking-naïve n = 21) contributed to the final analysis. The choking group showed significantly increased cortical thickness across multiple regions (e.g., fusiform, lateral occipital, lingual gyri) compared to the choking-naïve group. Widespread reductions of the gyrification were observed in the choking group as opposed to the choking-naïve group. However, there was no group difference in sulcal depth. The fractal dimensionality showed bi-directional results, where the choking group exhibited increased dimensionality in areas including the postcentral gyrus, insula, and fusiform, whereas decreased dimensionality was observed in the bilateral superior frontal gyrus and pericalcarine cortex. Conclusion: These data in cortical morphology suggest that sexual choking events may be associated with neuroanatomical alteration. A longitudinal study with multimodal assessment is needed to better understand the temporal ordering of sexual choking and neurological outcomes.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University