- Browse by Author
Browsing by Author "Hosey, Kristen L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Analyses of the pathways involved in early- and late-phase induction of IFN-beta during C. muridarum infection of oviduct epithelial cells(PLoS, 2015-03-23) Hu, Sishun; Hosey, Kristen L.; Derbigny, Wilbert A.; Department of Microbiology and Immunology, IU School of MedicineWe previously reported that the IFN-β secreted by Chlamydia muridarum-infected murine oviduct epithelial cells (OE cells) was mostly dependent on the TLR3 signaling pathway. To further characterize the mechanisms of IFN-β synthesis during Chlamydia infection of OE cells in vitro, we utilized specific inhibitory drugs to clarify the roles of IRF3 and NF-κB on both early- and late-phase C. muridarum infections. Our results showed that the pathways involved in the early-phase of IFN-β production were distinct from that in the late-phase of IFN-β production. Disruption of IRF3 activation using an inhibitor of TBK-1 at early-phase Chlamydia infection had a significant impact on the overall synthesis of IFN-β; however, disruption of IRF3 activation at late times during infection had no effect. Interestingly, inhibition of NF-κB early during Chlamydia infection also had a negative effect on IFN-β production; however, its impact was not significant. Our data show that the transcription factor IRF7 was induced late during Chlamydia infection, which is indicative of a positive feedback mechanism of IFN-β synthesis late during infection. In contrast, IRF7 appears to play little or no role in the early synthesis of IFN-β during Chlamydia infection. Finally, we demonstrate that antibiotics that target chlamydial DNA replication are much more effective at reducing IFN-β synthesis during infection versus antibiotics that target chlamydial transcription. These results provide evidence that early- and late-phase IFN-β production have distinct signaling pathways in Chlamydia-infected OE cells, and suggest that Chlamydia DNA replication might provide a link to the currently unknown chlamydial PAMP for TLR3.Item The role of STAT1 in Chlamydia-induced type I interferon responses in oviduct epithelium(2013-12-10) Hosey, Kristen L.; Derbigny, Wilbert A; Blum, Janice Sherry, 1957-; Goebl, Mark, 1958-; Johnson, Raymond M.; Kaplan, Mark H.Progression of Chlamydia into upper reproductive tract epithelium and the induction of subsequent immune responses to infection are major contributors to Chlamydia-induced pathogenesis of the genital tract. We reported that C. muridarum infection of the oviduct epithelial cells (OEs) secrete IFN-β in a TLR3 dependent manner. However, we showed that the C. muridarum infected TLR3-deficient OEs were still able to secrete minimal amounts of IFN-β into the supernatants, which is suggestive that there are other signaling pathways that contribute to Chlamydia-induced IFN-β synthesis in these cells. Previous studies describing the activation of the JAK/STAT signaling pathway during Chlamydia infection of cervical epithelial cells proposes a putative role for STAT1 in the synthesis of type I IFNs during Chlamydia infection. The present study investigated the role of STAT1 in Chlamydia-induced IFN-β production in OEs. OEs were infected with Chlamydia muridarum and analyzed at 24 hours by RT-PCR and western blot to determine STAT1 expression. STAT (-/-) OEs were infected and IFN-β production measured by ELISA. Quantitative real-time PCR analyses were performed at 6 and 16 hour post-infection to elucidate the mechanisms involved in IFN-β production during infection. Fluorescent microscopy was used to observe changes in Chlamydia replication. STAT1 activation and expression were significantly increased in wild-type (WT) OEs upon infection. TLR3 (-/-) OEs showed diminished STAT1 protein activation and expression. Augmented STAT1 protein expression corresponded to STAT1 mRNA levels. ELISA analyses revealed significantly less IFN-β production in infected STAT1 (-/-) OEs compared to WT OEs. Quantitative real-time PCR data showed that gene expression of IFN-β and of type I IFN signaling components were significantly increased during late stage Chlamydia infection, dependent on STAT1. Temporal regulation and increases in expression of IFN-α subtypes during infection were STAT1-dependent. Our results implicate STAT1-mediated signaling as a contributor to the C. muridarum-induced synthesis of IFN-β and other type I IFNs in OEs. We previously described a major role for TLR3 in the early-stage Chlamydia-induced synthesis of IFN-β in OEs; the results from this study suggest a role for STAT1 in the synthesis of type I IFNs that occurs during early and late stages of infection.