- Browse by Author
Browsing by Author "Horgousluoglu, Emrin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Genetic variation affecting exon skipping contributes to brain structural atrophy in Alzheimer's disease(American Medical Informatics Association, 2018-05-18) Lee, Younghee; Han, Seonggyun; Kim, Dongwook; Kim, Dokyoon; Horgousluoglu, Emrin; Risacher, Shannon L.; Saykin, Andrew J.; Nho, Kwangsik; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineGenetic variation in cis-regulatory elements related to splicing machinery and splicing regulatory elements (SREs) results in exon skipping and undesired protein products. We developed a splicing decision model to identify actionable loci among common SNPs for gene regulation. The splicing decision model identified SNPs affecting exon skipping by analyzing sequence-driven alternative splicing (AS) models and by scanning the genome for the regions with putative SRE motifs. We used non-Hispanic Caucasians with neuroimaging, and fluid biomarkers for Alzheimer's disease (AD) and identified 17,088 common exonic SNPs affecting exon skipping. GWAS identified one SNP (rs1140317) in HLA-DQB1 as significantly associated with entorhinal cortical thickness, AD neuroimaging biomarker, after controlling for multiple testing. Further analysis revealed that rs1140317 was significantly associated with brain amyloid-f deposition (PET and CSF). HLA-DQB1 is an essential immune gene and may regulate AS, thereby contributing to AD pathology. SRE may hold potential as novel therapeutic targets for AD.Item Rare variants in the splicing regulatory elements of EXOC3L4 are associated with brain glucose metabolism in Alzheimer's disease(Biomed Central, 2018-09-14) Miller, Jason E.; Shivakumar, Manu K.; Lee, Younghee; Han, Seonggyun; Horgousluoglu, Emrin; Risacher, Shannon L.; Saykin, Andrew J.; Nho, Kwangsik; Kim, Dokyoon; Radiology and Imaging Sciences, School of MedicineBACKGROUND: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases that causes problems related to brain function. To some extent it is understood on a molecular level how AD arises, however there are a lack of biomarkers that can be used for early diagnosis. Two popular methods to identify AD-related biomarkers use genetics and neuroimaging. Genes and neuroimaging phenotypes have provided some insights as to the potential for AD biomarkers. While the field of imaging-genomics has identified genetic features associated with structural and functional neuroimaging phenotypes, it remains unclear how variants that affect splicing could be important for understanding the genetic etiology of AD. METHODS: In this study, rare variants (minor allele frequency < 0.01) in splicing regulatory element (SRE) loci from whole genome sequencing (WGS) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, were used to identify genes that are associated with global brain cortical glucose metabolism in AD measured by FDG PET-scans. Gene-based associated analyses of rare variants were performed using the program BioBin and the optimal Sequence Kernel Association Test (SKAT-O). RESULTS: The gene, EXOC3L4, was identified as significantly associated with global cortical glucose metabolism (FDR (false discovery rate) corrected p < 0.05) using SRE coding variants only. Three loci that may affect splicing within EXOC3L4 contribute to the association. CONCLUSION: Based on sequence homology, EXOC3L4 is likely a part of the exocyst complex. Our results suggest the possibility that variants which affect proper splicing of EXOC3L4 via SREs may impact vesicle transport, giving rise to AD related phenotypes. Overall, by utilizing WGS and functional neuroimaging we have identified a gene significantly associated with an AD related endophenotype, potentially through a mechanism that involves splicing.