- Browse by Author
Browsing by Author "Hong, Ki Sung"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells(Nature Publishing Group, 2014-11) Prasain, Nutan; Lee, Man Ryul; Vemula, Sasidhar; Meador, Jonathan Luke; Yoshimoto, Momoko; Ferkowicz, Michael J.; Fett, Alexa; Gupta, Manav; Rapp, Brian M.; Saadatzadeh, Mohammad Reza; Ginsberg, Michael; Elemento, Olivier; Lee, Younghee; Voytik-Harbin, Sherry L.; Chung, Hyung Min; Hong, Ki Sung; Reid, Emma; O'Neill, Christina L.; Medina, Reinhold J.; Stitt, Alan W.; Murphy, Michael P.; Rafii, Shahin; Broxmeyer, Hal E.; Yoder, Mervin C.; Department of Pediatrics, IU School of MedicineThe ability to differentiate human pluripotent stem cells into endothelial cells with properties of cord-blood endothelial colony-forming cells (CB-ECFCs) may enable the derivation of clinically relevant numbers of highly proliferative blood vessel-forming cells to restore endothelial function in patients with vascular disease. We describe a protocol to convert human induced pluripotent stem cells (hiPSCs) or embryonic stem cells (hESCs) into cells similar to CB-ECFCs at an efficiency of >10(8) ECFCs produced from each starting pluripotent stem cell. The CB-ECFC-like cells display a stable endothelial phenotype with high clonal proliferative potential and the capacity to form human vessels in mice and to repair the ischemic mouse retina and limb, and they lack teratoma formation potential. We identify Neuropilin-1 (NRP-1)-mediated activation of KDR signaling through VEGF165 as a critical mechanism for the emergence and maintenance of CB-ECFC-like cells.Item Spontaneously Differentiated GATA6-Positive Human Embryonic Stem Cells Represent an Important Cellular Step in Human Embryonic Development; They Are Not Just an Artifact of In Vitro Culture(Mary Ann Liebert, Inc., 2013-10-15) Lee, Jun Ho; Hong, Ki Sung; Mantel, Charlie; Broxmeyer, Hal E.; Lee, Man Ryul; Kim, Kye-Seong; Department of Microbiology & Immunology, School of MedicineIn this study, we isolated and characterized spontaneously differentiated human embryonic stem cells (SD-hESCs) found in hESC colonies in comparison to the morphologically premature ESCs in the colonies to investigate the potential role of SD-hESCs in embryogenesis. SD-hESCs were distinguished from undifferentiated hESCs by their higher expression of GATA6, a marker for primitive endoderm and transthyretin, a marker visceral endoderm in embryoid bodies (EBs). SD-hESCs expressed OCT4 and NANOG, markers for pluripotent stem cells, at significantly lower levels than undifferentiated hESCs. EBs derived from isolated SD-hESCs were morphologically distinct from cells directly derived from the undifferentiated hESCs; they contained higher number of cysts compared to EBs from undifferentiated hESC-derived EBs (42% vs. 20%). Furthermore, the extracellular signal molecule, BMP2/4, induced a higher GATA4/6 expression and cystic EB formation than control and noggin-treated EBs. Since cystic formation in EBs play a role in primitive endoderm formation during embryogenesis, the SD-hESC may be a relevant cell type equipped to differentiate into primitive endoderm. Our results suggest that SD-ESCs generated during routine hESC culture are not just an artifact of in vitro culture and these cells could serve as a useful model to study the process of embryogenesis.