- Browse by Author
Browsing by Author "Hong, Jung Min"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Adult-Onset Deletion of β-Catenin in 10kbDmp1-Expressing Cells Prevents Intermittent PTH-Induced Bone Gain(Oxford Academic, 2016-08) Kedlaya, Rajendra; Kang, Kyung Shin; Hong, Jung Min; Bettagere, Vidya; Lim, Kyung-Eun; Horan, Daniel; Divieti-Pajevic, Paola; Robling, Alexander G.; Anatomy and Cell Biology, School of Medicineβ-Catenin (βcat) is a major downstream signaling node in canonical Wingless-related integration site (Wnt) signaling pathway, and its activity is crucial for canonical Wnt signal transduction. Wnt signaling has recently been implicated in the osteo-anabolic response to PTH, a potent calcium-regulating factor. We investigated whether βcat is essential for the anabolic action of intermittent PTH by generating male mice with adult-onset deletion of βcat in a subpopulation of bone cells (osteocytes and late-stage osteoblasts), treating them with an anabolic regimen of PTH, and measuring the skeletal responses. Male 10kbDmp1-CreERt2 transgenic mice that also harbored floxed loss-of-function βcat alleles (βcatf/f) were induced for Cre activity using tamoxifen, then injected daily with human PTH 1–34 (30 μg/kg) or vehicle for 5 weeks. Mice in which βcat was deleted showed either total lack of bone mineral density (BMD) gain, or BMD loss, and did not respond to PTH treatment. However, bone mass measurements in the trabecular compartment of the femur and spine revealed PTH-induced bone gain whether βcat was deleted or not. PTH-stimulated increases in periosteal and cancellous bone formation rates were not impaired by βcat deletion, but resorption markers and cortical porosity were significantly increased in induced mice, particularly induced mice treated with PTH. These results suggest that βcat is required for net-positive BMD effects of PTH therapy but that the anabolic effects per se of PTH treatment might not require osteocytic/osteoblastic βcat.Item Chloroquine increases osteoclast activity in vitro but does not improve the osteopetrotic bone phenotype of ADO2 mice(Elsevier, 2021) Alam, Imranul; Gerard-O’Riley, Rita L.; Acton, Dena; Hardman, Sara L.; Hong, Jung Min; Bruzzaniti, Angela; Econs, Michael J.; Medicine, School of MedicineAutosomal Dominant Osteopetrosis type II (ADO2) is a bone disease of impaired osteoclastic bone resorption that usually results from heterozygous missense mutations in the chloride channel 7 (CLCN7) gene. We created mouse models of ADO2 by introducing a knock-in (p.G213R) mutation in the Clcn7 gene, which is analogous to one of the common mutations (G215R) found in humans. The mutation leads to severe osteopetrosis and lethality in homozygous mice but produces substantial phenotypic variability in heterozygous mice on different genetic backgrounds that phenocopy the human disease of ADO2. ADO2 is an osteoclast-intrinsic disease, and lysosomal enzymes and proteins are critical for osteoclast activity. Chloroquine (CQ) is known to affect lysosomal trafficking, intracellular signaling and the lysosomal and vesicular pH, suggesting it might improve ADO2 osteoclast function. We tested this hypothesis in cell culture studies using osteoclasts derived from wild-type (WT or ADO2+/+) and ADO2 heterozygous (ADO2+/−) mice and found that CQ and its metabolite desethylchloroquine (DCQ), significantly increased ADO2+/− osteoclasts bone resorption activity in vitro, whereas bone resorption of ADO2+/+ osteoclasts was increased only by DCQ. In addition, we exploited our unique animal model of ADO2 on 129 background to identify the effect of CQ for the treatment of ADO2. Female ADO2 mice at 8 weeks of age were treated with 5 doses of CQ (1, 2.5, 5, 7.5 and 10 mg/kg BW/day) via drinking water for 6 months. Bone mineral density and bone micro-architecture were analyzed by longitudinal in-vivo DXA and micro-CT at baseline, 3 and 6 months. Serum bone biomarkers (CTX, TRAP and P1NP) were also analyzed at these time points. CQ treatment at the doses tested failed to produce any significant changes of aBMD, BMC (whole body, femur and spine) and trabecular BV/TV (distal femur) in ADO2 mice compared to the control group (water only). Further, levels of bone biomarkers were not significantly changed due to CQ treatment in these mice. Our findings indicate that while CQ increased osteoclast activity in vitro, it did not improve the osteopetrotic bone phenotypes in ADO2 heterozygous mice.Item Effects of Radiopaque Double Antibiotic Pastes on the Proliferation, Alkaline Phosphatase Activity and Mineral Deposition of Dental Pulp Stem Cells(Elsevier, 2020-09) Wu, Jennifer L.; McIntyre, Patrick W.; Hong, Jung Min; Yassen, Ghaeth H.; Bruzzaniti, Angela; Biomedical Sciences and Comprehensive Care, School of DentistryObjective The aim of this study was to investigate the effects of two radiopaque agents, barium sulfate (BaSO4) or zirconium oxide (ZrO2) in double antibiotic paste (DAP), on the proliferation and mineral deposition of human dental pulp stem cells (DPSC). Materials and methods Radiopaque antimicrobial medicaments composed of methylcellulose (MC) thickening polymer with BaSO4 or ZrO2 and either 1 or 5 mg/mL DAP (equal portions of metronidazole and ciprofloxacin) were used to investigate DPSC proliferation after 3 days, and alkaline phosphatase (ALP) activity and mineral deposition after 7 and 14 days. Radiopaque agents without DAP and Ca(OH)2 were used as controls. Results MC-BaSO4 DAP and MC-ZrO2 DAP at 1 or 5 mg/mL had no adverse effect on DPSC proliferation, compared to the media and MC controls. MC-ZrO2 (DAP-free) greatly increased ALP activity after 7 days. DPSC mineral deposition was modestly reduced at 7 days by MC-BaSO4 DAP and MC-ZrO2 DAP, but not by DAP-free radiopaque agents, and was most reduced by 5 mg/mL DAP in the 14-day cultures. Conclusions MC-BaSO4 or MC-ZrO2 medicaments containing up to 5 mg/mL of DAP supported the proliferation and early osteogenic differentiation of DPSC. Low DAP concentrations and short culture times led to more favorable effects on ALP activity and mineral deposition by DPSC. The findings suggest that radiopaque agents added for the purpose of detecting whether medicaments occupy the full extent of the root canal may have clinical applications. Radiopaque antibiotic medicaments containing low DAP concentrations may be an alternative to Ca(OH)2 for regenerative endodontic procedures.Item Induction of Lrp5 HBM-causing mutations in Cathepsin-K expressing cells alters bone metabolism(Elsevier, 2019-03) Kang, Kyung Shin; Hong, Jung Min; Horan, Daniel J.; Lim, Kyung-Eun; Bullock, Whitney A.; Bruzzaniti, Angela; Hann, Steven; Warman, Matthew L.; Robling, Alexander G.; Anatomy and Cell Biology, School of MedicineHigh-bone-mass (HBM)-causing missense mutations in the low density lipoprotein receptor-related protein-5 (Lrp5) are associated with increased osteoanabolic action and protection from disuse- and ovariectomy-induced osteopenia. These mutations (e.g., A214V and G171V) confer resistance to endogenous secreted Lrp5/6 inhibitors, such as sclerostin (SOST) and Dickkopf homolog-1 (DKK1). Cells in the osteoblast lineage are responsive to canonical Wnt stimulation, but recent work has indicated that osteoclasts exhibit both indirect and direct responsiveness to canonical Wnt. Whether Lrp5-HBM receptors, expressed in osteoclasts, might alter osteoclast differentiation, activity, and consequent net bone balance in the skeleton, is not known. To address this, we bred mice harboring heterozygous Lrp5 HBM-causing conditional knock-in alleles to Ctsk-Cre transgenic mice and studied the phenotype using DXA, μCT, histomorphometry, serum assays, and primary cell culture. Mice with HBM alleles induced in Ctsk-expressing cells (TG) exhibited higher bone mass and architectural properties compared to non-transgenic (NTG) counterparts. In vivo and in vitro measurements of osteoclast activity, population density, and differentiation yielded significant reductions in osteoclast-related parameters in female but not male TG mice. Droplet digital PCR performed on osteocyte enriched cortical bone tubes from TG and NTG mice revealed that ~8–17% of the osteocyte population (depending on sex) underwent recombination of the conditional Lrp5 allele in the presence of Ctsk-Cre. Further, bone formation parameters in the midshaft femur cortex show a small but significant increase in anabolic action on the endocortical but not periosteal surface. These findings suggest that Wnt/Lrp5 signaling in osteoclasts affects osteoclastogenesis and activity in female mice, but also that some of the changes in bone mass in TG mice might be due to Cre expression in the osteocyte population.Item Megakaryocytes promote osteoclastogenesis in aging(Impact Journals, 2020-07-07) Kanagasabapathy, Deepa; Blosser, Rachel J.; Maupin, Kevin A.; Hong, Jung Min; Alvarez, Marta; Ghosh, Joydeep; Mohamad, Safa F.; Aguilar-Perez, Alexandra; Srour, Edward F.; Kacena, Melissa A.; Bruzzaniti, Angela; Orthopaedic Surgery, School of MedicineMegakaryocytes (MKs) support bone formation by stimulating osteoblasts (OBs) and inhibiting osteoclasts (OCs). Aging results in higher bone resorption, leading to bone loss. Whereas previous studies showed the effects of aging on MK-mediated bone formation, the effects of aging on MK-mediated OC formation is poorly understood. Here we examined the effect of thrombopoietin (TPO) and MK-derived conditioned media (CM) from young (3-4 months) and aged (22-25 months) mice on OC precursors. Our findings showed that aging significantly increased OC formation in vitro. Moreover, the expression of the TPO receptor, Mpl, and circulating TPO levels were elevated in the bone marrow cavity. We previously showed that MKs from young mice secrete factors that inhibit OC differentiation. However, rather than inhibiting OC development, we found that MKs from aged mice promote OC formation. Interestingly, these age-related changes in MK functionality were only observed using female MKs, potentially implicating the sex steroid, estrogen, in signaling. Further, RANKL expression was highly elevated in aged MKs suggesting MK-derived RANKL signaling may promote osteoclastogenesis in aging. Taken together, these data suggest that modulation in TPO-Mpl expression in bone marrow and age-related changes in the MK secretome promote osteoclastogenesis to impact skeletal aging.Item Neonatal Osteomacs and Bone Marrow Macrophages Differ in Phenotypic Marker Expression and Function(Wiley, 2021) Mohamad, Safa F.; Gunawan, Andrea; Blosser, Rachel; Childress, Paul; Aguilar-Perez, Alexandra; Ghosh, Joydeep; Hong, Jung Min; Liu, Jianyun; Kanagasabapathy, Deepa; Kacena, Melissa A.; Srour, Edward F.; Bruzzaniti, Angela; Medicine, School of MedicineOsteomacs (OM) are specialized bone-resident macrophages that are a component of the hematopoietic niche and support bone formation. Also located in the niche are a second subset of macrophages, namely bone marrow-derived macrophages (BM Mφ). We previously reported that a subpopulation of OM co-express both CD166 and CSF1R, the receptor for macrophage colony-stimulating factor (MCSF), and that OM form more bone-resorbing osteoclasts than BM Mφ. Reported here are single-cell quantitative RT-PCR (qRT-PCR), mass cytometry (CyTOF), and marker-specific functional studies that further identify differences between OM and BM Mφ from neonatal C57Bl/6 mice. Although OM express higher levels of CSF1R and MCSF, they do not respond to MCSF-induced proliferation, in contrast to BM Mφ. Moreover, receptor activator of NF-κB ligand (RANKL), without the addition of MCSF, was sufficient to induce osteoclast formation in OM but not BM Mφ cultures. OM express higher levels of CD166 than BM Mφ, and we found that osteoclast formation by CD166-/- OM was reduced compared with wild-type (WT) OM, whereas CD166-/- BM Mφ showed enhanced osteoclast formation. CD110/c-Mpl, the receptor for thrombopoietin (TPO), was also higher in OM, but TPO did not alter OM-derived osteoclast formation, whereas TPO stimulated BM Mφ osteoclast formation. CyTOF analyses demonstrated OM uniquely co-express CD86 and CD206, markers of M1 and M2 polarized macrophages, respectively. OM performed equivalent phagocytosis in response to LPS or IL-4/IL-10, which induce polarization to M1 and M2 subtypes, respectively, whereas BM Mφ were less competent at phagocytosis when polarized to the M2 subtype. Moreover, in contrast to BM Mφ, LPS treatment of OM led to the upregulation of CD80, an M1 marker, as well as IL-10 and IL-6, known anti-inflammatory cytokines. Overall, these data reveal that OM and BM Mφ are distinct subgroups of macrophages, whose phenotypic and functional differences in proliferation, phagocytosis, and osteoclast formation may contribute physiological specificity during health and disease.Item Notum Deletion From Late-Stage Skeletal Cells Increases Cortical Bone Formation and Potentiates Skeletal Effects of Sclerostin Inhibition(Wiley, 2021) Choi, Roy B.; Bullock, Whitney A.; Hoggatt, April M.; Horan, Daniel J.; Pemberton, Emily Z.; Hong, Jung Min; Zhang, Xinjun; He, Xi; Robling, Alexander G.; Anatomy, Cell Biology and Physiology, School of MedicineWnt signaling plays a vital role in the cell biology of skeletal patterning, differentiation, and maintenance. Notum is a secreted member of the α/β-hydrolase superfamily that hydrolyzes the palmitoleoylate modification on Wnt proteins, thereby disrupting Wnt signaling. As a secreted inhibitor of Wnt, Notum presents an attractive molecular target for improving skeletal health. To determine the cell type of action for Notum's effect on the skeleton, we generated mice with Notum deficiency globally (Notum-/- ) and selectively (Notumf/f ) in limb bud mesenchyme (Prx1-Cre) and late osteoblasts/osteocytes (Dmp1-Cre). Late-stage deletion induced increased cortical bone properties, similar to global mutants. Notum expression was enhanced in response to sclerostin inhibition, so dual inhibition (Notum/sclerostin) was also investigated using a combined genetic and pharmacologic approach. Co-suppression increased cortical properties beyond either factor alone. Notum suppressed Wnt signaling in cell reporter assays, but surprisingly also enhanced Shh signaling independent of effects on Wnt. Notum is an osteocyte-active suppressor of cortical bone formation that is likely involved in multiple signaling pathways important for bone homeostasis.Item Osteomacs interact with megakaryocytes and osteoblasts to regulate murine hematopoietic stem cell function(ASH, 2017-12) Mohamad, Safa F.; Xu, Linlin; Ghosh, Joydeep; Childress, Paul J.; Abeysekera, Irushi; Himes, Evan R.; Wu, Hao; Alvarez, Marta B.; Davis, Korbin M.; Aguilar-Perez, Alexandra; Hong, Jung Min; Bruzzaniti, Angela; Kacena, Melissa A.; Srour, Edward F.; Biomedical Sciences and Comprehensive Care, School of DentistryNetworking between hematopoietic stem cells (HSCs) and cells of the hematopoietic niche is critical for stem cell function and maintenance of the stem cell pool. We characterized calvariae-resident osteomacs (OMs) and their interaction with megakaryocytes to sustain HSC function and identified distinguishing properties between OMs and bone marrow (BM)–derived macrophages. OMs, identified as CD45+F4/80+ cells, were easily detectable (3%-5%) in neonatal calvarial cells. Coculture of neonatal calvarial cells with megakaryocytes for 7 days increased OM three- to sixfold, demonstrating that megakaryocytes regulate OM proliferation. OMs were required for the hematopoiesis-enhancing activity of osteoblasts, and this activity was augmented by megakaryocytes. Serial transplantation demonstrated that HSC repopulating potential was best maintained by in vitro cultures containing osteoblasts, OMs, and megakaryocytes. With or without megakaryocytes, BM-derived macrophages were unable to functionally substitute for neonatal calvarial cell–associated OMs. In addition, OMs differentiated into multinucleated, tartrate resistant acid phosphatase–positive osteoclasts capable of bone resorption. Nine-color flow cytometric analysis revealed that although BM-derived macrophages and OMs share many cell surface phenotypic similarities (CD45, F4/80, CD68, CD11b, Mac2, and Gr-1), only a subgroup of OMs coexpressed M-CSFR and CD166, thus providing a unique profile for OMs. CD169 was expressed by both OMs and BM-derived macrophages and therefore was not a distinguishing marker between these 2 cell types. These results demonstrate that OMs support HSC function and illustrate that megakaryocytes significantly augment the synergistic activity of osteoblasts and OMs. Furthermore, this report establishes for the first time that the crosstalk between OMs, osteoblasts, and megakaryocytes is a novel network supporting HSC function.Item Postnatal β-catenin deletion from Dmp1-expressing osteocytes/osteoblasts reduces structural adaptation to loading, but not periosteal load-induced bone formation(Elsevier, 2016-07) Kang, Kyung Shin; Hong, Jung Min; Robling, Alexander G.; Anatomy and Cell Biology, School of MedicineMechanical signal transduction in bone tissue begins with load-induced activation of several cellular pathways in the osteocyte population. A key pathway that participates in mechanotransduction is Wnt/Lrp5 signaling. A putative downstream mediator of activated Lrp5 is the nucleocytoplasmic shuttling protein β-catenin (βcat), which migrates to the nucleus where it functions as a transcriptional co-activator. We investigated whether osteocytic βcat participates in Wnt/Lrp5-mediated mechanotransduction by conducting ulnar loading experiments in mice with or without chemically induced βcat deletion in osteocytes. Mice harboring βcat floxed loss-of-function alleles (βcat(f/f)) were bred to the inducible osteocyte Cre transgenic (10)(kb)Dmp1-CreERt2. Adult male mice were induced to recombine the βcat alleles using tamoxifen, and intermittent ulnar loading sessions were applied over the following week. Although adult-onset deletion of βcat from Dmp1-expressing cells reduced skeletal mass, the bone tissue was responsive to mechanical stimulation as indicated by increased relative periosteal bone formation rates in recombined mice. However, load-induced improvements in cross sectional geometric properties were compromised in recombined mice. The collective results indicate that the osteoanabolic response to loading can occur on the periosteal surface when β-cat levels are significantly reduced in Dmp1-expressing cells, suggesting that either (i) only low levels of β-cat are required for mechanically induced bone formation on the periosteal surface, or (ii) other additional downstream mediators of Lrp5 might participate in transducing load-induced Wnt signaling.Item The proto‐oncogene function of Mdm2 in bone(Wiley, 2018-11) Olivos, David J., III; Perrien, Daniel S.; Hooker, Adam; Cheng, Ying-Hua; Fuchs, Robyn K.; Hong, Jung Min; Bruzzaniti, Angela; Chun, Kristin; Eischen, Christine M.; Kacena, Melissa A.; Mayo, Lindsey D.; Pediatrics, School of MedicineMouse double minute 2 (Mdm2) is a multifaceted oncoprotein that is highly regulated with distinct domains capable of cellular transformation. Loss of Mdm2 is embryonically lethal, making it difficult to study in a mouse model without additional genetic alterations. Global overexpression through increased Mdm2 gene copy number (Mdm2Tg) results in the development of hematopoietic neoplasms and sarcomas in adult animals. In these mice, we found an increase in osteoblastogenesis, differentiation, and a high bone mass phenotype. Since it was difficult to discern the cell lineage that generated this phenotype, we generated osteoblast‐specific Mdm2 overexpressing (Mdm2TgOb) mice in 2 different strains, C57BL/6 and DBA. These mice did not develop malignancies; however, these animals and the MG63 human osteosarcoma cell line with high levels of Mdm2 showed an increase in bone mineralization. Importantly, overexpression of Mdm2 corrected age‐related bone loss in mice, providing a role for the proto‐oncogenic activity of Mdm2 in bone health of adult animals.