- Browse by Author
Browsing by Author "Holton, Janice L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Luminescent conjugated oligothiophenes distinguish between α-synuclein assemblies of Parkinson’s disease and multiple system atrophy(BMC, 2019-12-03) Klingstedt, Therése; Ghetti, Bernardino; Holton, Janice L.; Ling, Helen; Nilsson, K. Peter R.; Goedert, Michel; Pathology and Laboratory Medicine, School of MedicineSynucleinopathies [Parkinson’s disease with or without dementia, dementia with Lewy bodies and multiple system atrophy] are neurodegenerative diseases that are defined by the presence of filamentous α-synuclein inclusions. We investigated the ability of luminescent conjugated oligothiophenes to stain the inclusions of Parkinson’s disease and multiple system atrophy. They stained the Lewy pathology of Parkinson’s disease and the glial cytoplasmic inclusions of multiple system atrophy. Spectral analysis of HS-68-stained inclusions showed a red shift in multiple system atrophy, but the difference with Parkinson’s disease was not significant. However, when inclusions were double-labelled for HS-68 and an antibody specific for α-synuclein phosphorylated at S129, they could be distinguished based on colour shifts with blue designated for Parkinson’s disease and red for multiple system atrophy. The inclusions of Parkinson’s disease and multiple system atrophy could also be distinguished using fluorescence lifetime imaging. These findings are consistent with the presence of distinct conformers of assembled α-synuclein in Parkinson’s disease and multiple system atrophy.Item Silver staining (Campbell-Switzer) of neuronal α-synuclein assemblies induced by multiple system atrophy and Parkinson's disease brain extracts in transgenic mice(BioMed Central, 2019-09-16) Lavenir, Isabelle; Passarella, Daniela; Masuda-Suzukake, Masami; Curry, Annabelle; Holton, Janice L.; Ghetti, Bernardino; Goedert, Michel; Pathology and Laboratory Medicine, School of MedicineSynucleinopathies [Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA)] share filamentous α-synuclein assemblies in nerve cells and glial cells. We compared the abilities of brain extracts from MSA and PD patients to induce neuronal α-synuclein assembly and neurodegeneration following intracerebral injection in heterozygous mice transgenic for human mutant A53T α-synuclein. MSA extracts were more potent than PD extracts in inducing α-synuclein assembly and in causing neurodegeneration. MSA assemblies were Campbell-Switzer- and Gallyas-silver-positive, whereas PD assemblies were only Campbell-Switzer-positive, in confirmation of previous findings. However, induced α-synuclein inclusions were invariably Campbell-Switzer-positive and Gallyas-negative, irrespective of whether MSA or PD brain extracts were injected. The α-synuclein inclusions of non-injected homozygous mice transgenic for A53T α-synuclein were also Campbell-Switzer-positive and Gallyas-negative. These findings demonstrate that transgene expression and its intracellular environment dominated over the silver staining properties of the conformers of assembled α-synuclein.