- Browse by Author
Browsing by Author "Hollister, Kristin"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Bcl6 promotes follicular helper T-cell differentiation and PD-1 expression in a Blimp1-independent manner in mice(Wiley, 2017-07) Xie, Markus M.; Koh, Byung-Hee; Hollister, Kristin; Wu, Hao; Sun, Jie; Kaplan, Mark H.; Dent, Alexander L.; Department of Microbiology and Immunology, IU School of MedicineThe transcription factors Bcl6 and Blimp1 have opposing roles in the development of the follicular helper T (TFH) cells: Bcl6 promotes and Blimp1 inhibits TFH-cell differentiation. Similarly, Bcl6 activates, while Blimp1 represses, expression of the TFH-cell marker PD-1. However, Bcl6 and Blimp1 repress each other's expression, complicating the interpretation of the regulatory network. Here we sought to clarify the extent to which Bcl6 and Blimp1 independently control TFH-cell differentiation by generating mice with T-cell specific deletion of both Bcl6 and Blimp1 (double conditional KO [dcKO] mice). Our data indicate that Blimp1 does not control TFH-cell differentiation independently of Bcl6. However, a population of T follicular regulatory (TFR) cells developed independently of Bcl6 in dcKO mice. We have also analyzed regulation of IL-10 and PD-1, two genes controlled by both Bcl6 and Blimp1, and observed that Bcl6 regulates both genes independently of Blimp1. We found that Bcl6 positively regulates PD-1 expression by inhibiting the ability of T-bet/Tbx21 to repress Pdcd1 transcription. Our data provide a novel mechanism for positive control of gene expression by Bcl6, and illuminate how Bcl6 and Blimp1 control TFH-cell differentiation.Item Levels of circulating follicular helper T cells, T helper 1 cells, and the prognostic significance of soluble form of CD40 ligand on survival in patients with alcoholic cirrhosis(KeAi Communications Co., 2018-03) Hollister, Kristin; Kusumanchi, Praveen; Ross, Ruth Ann; Chandler, Kristina; Oshodi, AdePeju; Heathers, Laura; Teagarden, Sean; Wang, Li; Dent, Alexander L.; Liangpunsakul, Suthat; Microbiology and Immunology, School of MedicineBackground: Excessive drinkers (ED) and patients with alcoholic liver disease (ALD) are several times more susceptible to bacterial and viral infections and have a decrease in antibody responses to vaccinations. Follicular helper T (TFH) cells are essential to select B cells in the germinal center and to produce antibodies. TFH cells express both a membrane-associated and a soluble form of CD40 ligand (sCD40L); in which the latter form is released to circulation upon T cell activation. The effect of alcohol on TFH cells has not been studied. Objectives: The goals of this study are to determine the levels of TFH and T helper 1 (Th1) cells in ED and those with alcoholic cirrhosis (AC) when compared to healthy controls and to determine the prognostic significance of sCD40L in a cohort of patients with AC. Methods: Controls, ED, and those with AC were enrolled. Baseline demographic, laboratory tests, and peripheral blood mononuclear cells (PBMCs) were isolated and assessed via flow cytometry for TFH cells. In vitro study was performed to determine the ability of PBMCs to secrete interferon (IFN)-γ upon stimulation. Serum sCD40L were also determined and its prognostic significance was tested in a cohort of AC patients. Results: The levels of circulating TFH (cTFH) cells were significantly lower in peripheral blood of subjects with ED and AC compared to controls (P<0.05). IFN-γ secretion from PBMCs upon stimulation was also lower in ED and those with cirrhosis. Serum sCD40L was significantly lower in ED and AC when compared to that in controls (P<0.0005). Its level was an independent predictor of mortality. Conclusions: Patients with AC had significantly lower level of cTFH and sCD40L. The level of sCD40L was an independent predictor of mortality in these patients.Item A negative feedback loop mediated by the Bcl6-cullin 3 complex limits Tfh cell differentiation(Rockefeller University Press, 2014-06-02) Matthew, Rebecca; Mao, Ai-ping; Chiang, Andrew H.; Bertozzi-Villa, Clara; Bunker, Jeffery J.; Scanlon, Seth T.; McDonald, Benjamin D.; Constantinides, Michael G.; Hollister, Kristin; Singer, Jeffrey D.; Dent, Alexander L.; Dinner, Aaron R.; Bendelac, Albert; Department of Microbiology & Immunology, IU School of MedicineInduction of Bcl6 (B cell lymphoma 6) is essential for T follicular helper (Tfh) cell differentiation of antigen-stimulated CD4(+) T cells. Intriguingly, we found that Bcl6 was also highly and transiently expressed during the CD4(+)CD8(+) (double positive [DP]) stage of T cell development, in association with the E3 ligase cullin 3 (Cul3), a novel binding partner of Bcl6 which ubiquitinates histone proteins. DP stage-specific deletion of the E3 ligase Cul3, or of Bcl6, induced the derepression of the Bcl6 target genes Batf (basic leucine zipper transcription factor, ATF-like) and Bcl6, in part through epigenetic modifications of CD4(+) single-positive thymocytes. Although they maintained an apparently normal phenotype after emigration, they expressed increased amounts of Batf and Bcl6 at basal state and produced explosive and prolonged Tfh responses upon subsequent antigen encounter. Ablation of Cul3 in mature CD4(+) splenocytes also resulted in dramatically exaggerated Tfh responses. Thus, although previous studies have emphasized the essential role of Bcl6 in inducing Tfh responses, our findings reveal that Bcl6-Cul3 complexes also provide essential negative feedback regulation during both thymocyte development and T cell activation to restrain excessive Tfh responses.Item The role of follicular helper T cells and the germinal center in HIV-1 gp120 DNA prime and gp120 protein boost vaccination(Taylor & Francis, 2014-07) Hollister, Kristin; Chen, Yuxin; Wang, Shixia; Wu, Hao; Mondal, Arpita; Clegg, Ninah; Lu, Shan; Dent, Alexander; Department of Microbiology and Immunology, IU School of MedicineThe importance of follicular T helper (TFH) cells and the germinal center (GC) reaction in the humoral immune response has become clear in recent years, however the role of TFH cells and the GC in an HIV vaccine strategy remains unclear. In this study, we primed mice with gp120-encoding DNA and boosted with gp120 protein, a regimen previously shown to induce high titers of high affinity and cross-reactive anti-gp120 Abs. Priming with gp120 DNA caused increased TFH cell differentiation, GC B cells, and antigen-specific antibody titers, compared with priming with gp120 protein. Priming with DNA also caused more activated CD4(+) T cells to become TFH cells and more GC B cells to become memory cells. Deletion of BCL6 midway through the vaccine regimen resulted in loss of TFH cells and GCs, and, unexpectedly, increased anti-gp120 IgG titers and avidity. Our data suggests vaccination with gp120-encoding DNA elicits a stronger and more rapid TFH and GC response than gp120 protein. Furthermore, we demonstrate that the GC reaction may actually limit antigen-specific IgG secretion in the context of repeated immunizations.Item Virus-encoded ectopic CD74 enhances poxvirus vaccine efficacy(Wiley Blackwell (Blackwell Publishing), 2014-04) Walline, Crystal C.; Deffit, Sarah N.; Wang, Nan; Guindon, Lynette M.; Crotzer, Victoria L.; Liu, Jianyun; Hollister, Kristin; Eisenlohr, Laurence C.; Brutkiewicz, Randy R.; Kaplan, Mark H.; Blum, Janice S.; Department of Microbiology & Immunology, IU School of MedicineVaccinia virus (VV) has been used globally as a vaccine to eradicate smallpox. Widespread use of this viral vaccine has been tempered in recent years because of its immuno-evasive properties, with restrictions prohibiting VV inoculation of individuals with immune deficiencies or atopic skin diseases. VV infection is known to perturb several pathways for immune recognition including MHC class II (MHCII) and CD1d-restricted antigen presentation. MHCII and CD1d molecules associate with a conserved intracellular chaperone, CD74, also known as invariant chain. Upon VV infection, cellular CD74 levels are significantly reduced in antigen-presenting cells, consistent with the observed destabilization of MHCII molecules. In the current study, the ability of sustained CD74 expression to overcome VV-induced suppression of antigen presentation was investigated. Viral inhibition of MHCII antigen presentation could be partially ameliorated by ectopic expression of CD74 or by infection of cells with a recombinant VV encoding murine CD74 (mCD74-VV). In contrast, virus-induced disruptions in CD1d-mediated antigen presentation persisted even with sustained CD74 expression. Mice immunized with the recombinant mCD74-VV displayed greater protection during VV challenge and more robust anti-VV antibody responses. Together, these observations suggest that recombinant VV vaccines encoding CD74 may be useful tools to improve CD4⁺ T-cell responses to viral and tumour antigens.