- Browse by Author
Browsing by Author "Hodges, Craig A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Bronchopulmonary Dysplasia and Pulmonary Hypertension. The Role of Smooth Muscle adh5(American Thoracic Society, 2021-07) Raffay, Thomas M.; Bonilla-Fernandez, Koby; Jafri, Anjum; Sopi, Ramadan B.; Smith, Laura A.; Cui, Feifei; O’Reilly, Maureen; Zhang, Rongli; Hodges, Craig A.; MacFarlane, Peter M.; Deutsch, Gail; Martin, Richard J.; Gaston, Benjamin; Pediatrics, School of MedicineBronchopulmonary dysplasia (BPD) is characterized by alveolar simplification, airway hyperreactivity, and pulmonary hypertension. In our BPD model, we have investigated the metabolism of the bronchodilator and pulmonary vasodilator GSNO (S-nitrosoglutathione). We have shown the GSNO catabolic enzyme encoded by adh5 (alcohol dehydrogenase-5), GSNO reductase, is epigenetically upregulated in hyperoxia. Here, we investigated the distribution of GSNO reductase expression in human BPD and created an animal model that recapitulates the human data. Blinded comparisons of GSNO reductase protein expression were performed in human lung tissues from infants and children with and without BPD. BPD phenotypes were evaluated in global (adh5-/-) and conditional smooth muscle (smooth muscle/adh5-/-) adh5 knockout mice. GSNO reductase was prominently expressed in the airways and vessels of human BPD subjects. Compared with controls, expression was greater in BPD smooth muscle, particularly in vascular smooth muscle (2.4-fold; P = 0.003). The BPD mouse model of neonatal hyperoxia caused significant alveolar simplification, airway hyperreactivity, and right ventricular and vessel hypertrophy. Global adh5-/- mice were protected from all three aspects of BPD, whereas smooth muscle/adh5-/- mice were only protected from pulmonary hypertensive changes. These data suggest adh5 is required for the development of BPD. Expression in the pulmonary vasculature is relevant to the pathophysiology of BPD-associated pulmonary hypertension. GSNO-mimetic agents or GSNO reductase inhibitors, both of which are currently in clinical trials for other conditions, could be considered for further study in BPD.Item Voltage-gated potassium channel proteins and stereoselective S-nitroso-l-cysteine signaling(American Society for Clinical Investigation, 2020-08-13) Gaston, Benjamin; Smith, Laura; Bosch, Jürgen; Seckler, James; Kunze, Diana; Kiselar, Janna; Marozkina, Nadzeya; Hodges, Craig A.; Wintrobe, Patrick; McGee, Kellen; Morozkina, Tatiana S.; Burton, Spencer T.; Lewis, Tristan; Strassmaier, Timothy; Getsy, Paulina; Bates, James N.; Lewis, Stephen J.; Pediatrics, School of MedicineS-nitroso-l-cysteine (L-CSNO) behaves as a ligand. Its soluble guanylate cyclase–independent (sGC-independent) effects are stereoselective — that is, not recapitulated by S-nitroso-d-cysteine (D-CSNO) — and are inhibited by chemical congeners. However, candidate L-CSNO receptors have not been identified. Here, we have used 2 complementary affinity chromatography assays — followed by unbiased proteomic analysis — to identify voltage-gated K+ channel (Kv) proteins as binding partners for L-CSNO. Stereoselective L-CSNO–Kv interaction was confirmed structurally and functionally using surface plasmon resonance spectroscopy; hydrogen deuterium exchange; and, in Kv1.1/Kv1.2/Kvβ2-overexpressing cells, patch clamp assays. Remarkably, these sGC-independent L-CSNO effects did not involve S-nitrosylation of Kv proteins. In isolated rat and mouse respiratory control (petrosyl) ganglia, L-CSNO stereoselectively inhibited Kv channel function. Genetic ablation of Kv1.1 prevented this effect. In intact animals, L-CSNO injection at the level of the carotid body dramatically and stereoselectively increased minute ventilation while having no effect on blood pressure; this effect was inhibited by the L-CSNO congener S-methyl-l-cysteine. Kv proteins are physiologically relevant targets of endogenous L-CSNO. This may be a signaling pathway of broad relevance.