- Browse by Author
Browsing by Author "Hippenmeyer, Lauren"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Bi-Mix Antibacterial Drug-Delivery System for Regenerative Endodontics(Office of the Vice Chancellor for Research, 2013-04-05) Palasuk, Jadesada; Hippenmeyer, Lauren; Gregory, Richard L.; Platt, Jeffrey A.; Spolnik, Kenneth J.; Bottino, Marco C.Traumatic injuries to immature teeth have traditionally been managed via apexification therapy with intracanal calcium hydroxide/Ca(OH)2. Recently, the use of a bi-mix (metronidazole-MET and ciprofloxacin-CIP) paste appears to provide more predictable results. The objective of this study was to fabricate/characterize polydioxanone (PDSII®)-based electrospun bi-mix drug-delivery systems incorporated with the combination of MET and CIP. The antibacterial property of the released media was tested against Enterococcus faecalis (Ef), Porphyromonas gingivalis (Pg) , Aggregatibacter actinomycetemcomitans (Aa). PDSII® was dissolved in HFP to obtain a 10wt.% solution. Either MET, CIP or distinct drug combinations were added into the solution followed by homogenization overnight. Six groups of study were employed: Control-100%PDS, G1-100%MET, G2-75%MET+25%CIP, G3- 50%MET+50%CIP, G4-25%MET+75%CIP and G5-100%CIP. Electrospinning was done based on optimized parameters to fabricate the distinct samples. Uniaxial microtensile testing (n=10), Fourier transform infrared spectroscopy/FTIR, scanning electron microscopy (SEM), and agar diffusion assay were used to characterize mechanical, chemical and antibacterial properties. One-way ANOVA (only for fiber diameter), Kruskal-Wallis and Mann-Whitney tests were performed (α=0.05). The results showed that uniaxial tensile strength was not significantly decreased compared to the control except G3. Average fiber diameters were in the nano-scaled range and significantly lower then the control. SEM imaging indicated a submicron fibrous morphology. FTIR confirmed the characteristic peaks for PDS as well as for the employed drugs. Agar diffusion assay suggested that the higher the CIP concentration the greater the antibacterial property against Ef, Pg and Aa. The results indicated that higher amount of CIP (G4 & G5) did not compromise mechanical properties of nanofibers and showed the highest bacterial inhibition against Ef, Pg and Aa. Optimization of the physical-mechanical properties, kinetics of drug release, and the effect of released drugs on dental pulp stem cells are currently being pursued. Partially funded by American Association of Endodontists/AAE (M.C.B.).Item Bimix antimicrobial scaffolds for regenerative endodontics(Elsevier, 2014-11) Palasuk, Jadesada; Kamocki, Krzysztof; Hippenmeyer, Lauren; Platt, Jeffrey A.; Spolnik, Kenneth J.; Gregory, Richard L.; Bottino, Marco C.; Department of Restorative Dentistry, IU School of DentistryINTRODUCTION: Eliminating and/or inhibiting bacterial growth within the root canal system has been shown to play a key role in the regenerative outcome. The aim of this study was to synthesize and determine in vitro both the antimicrobial effectiveness and cytocompatibility of bimix antibiotic-containing polydioxanone-based polymer scaffolds. METHODS: Antibiotic-containing (metronidazole [MET] and ciprofloxacin [CIP]) polymer solutions (distinct antibiotic weight ratios) were spun into fibers as a potential mimic to the double antibiotic paste (DAP, a MET/CIP mixture). Fiber morphology, chemical characteristics, and tensile strength were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy, and tensile testing, respectively. Antimicrobial efficacy was tested over time (aliquot collection) against Enterococcus faecalis (Ef), Porphyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn). Similarly, cytotoxicity was evaluated in human dental pulp stem cells. Data were statistically analyzed (P < .05). RESULTS: Scanning electron microscopy and Fourier transform infrared spectroscopy confirmed that electrospinning was able to produce antibiotic-containing fibers with a diameter mostly in the nanoscale. The tensile strength of 1:1MET/CIP scaffolds was significantly (P < .05) higher than pure polydioxanone (control). Meanwhile, all other groups presented similar strength as the control. Aliquots obtained from antibiotic-containing scaffolds inhibited the growth of Ef, Pg, and Fn, except pure MET, which did not show an inhibitory action toward Pg or Fn. Antibiotic-containing aliquots promoted slight human dental pulp stem cell viability reduction, but none of them were considered to be cytotoxic. CONCLUSIONS: Our data suggest that the incorporation of multiple antibiotics within a nanofibrous scaffold holds great potential toward the development of a drug delivery system for regenerative endodontics.