ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hill, Kathleen M."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Bone Turnover is not Influenced by Serum 25-Hydroxyvitamin D in Pubertal Healthy Black and White Children
    (Elsevier B.V., 2012-10) Hill, Kathleen M.; Laing, Emma M.; Hausman, Dorothy B.; Acton, Anthony; Martin, Berdine R.; McCabe, George P.; Weaver, Connie M.; Lewis, Richard D.; Peacock, Munro; Department of Medicine, IU School of Medicine
    Low serum 25-hydroxyvitamin D [25(OH)D] is common in healthy children particularly in blacks. However, serum 25(OH)D concentrations for optimal bone turnover in children is unknown and few data exist that describe effects of increasing serum 25(OH)D on bone turnover markers during puberty. The purpose of this study was to determine the relationships between serum 25(OH)D and changes in serum 25(OH)D and bone turnover in white and black pubertal adolescents. Bone turnover markers were measured in 318 healthy boys and girls from Georgia (34°N) and Indiana (40°N) who participated in a study of oral vitamin D3 supplementation (0 to 4000 IU/d). Serum 25(OH)D, osteocalcin, bone alkaline phosphatase, and urine N-telopeptide cross-links were measured at baseline and 12 weeks. Relationships among baseline 25(OH)D and bone biomarkers, and between changes over 12 weeks were determined and tested for effects of race, sex, latitude, and baseline 25(OH)D. Median 25(OH)D was 27.6 ng/mL (n=318, range 10.1–46.0 ng/mL) at baseline and 34.5 ng/mL (n=302, range 9.7–95.1 ng/mL) at 12 weeks. Neither baseline nor change in 25(OH)D over 12 weeks were associated with bone turnover. The lack of association was not affected by race, sex, latitude, or baseline serum 25(OH)D. Serum 25(OH)D in the range of 10-46 ng/mL appears to be sufficient for normal bone turnover in healthy black and white pubertal adolescents.
  • Loading...
    Thumbnail Image
    Item
    Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease
    (Nature Publishing Group, 2013-05) Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P.; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro; Department of Medicine, IU School of Medicine
    Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-controlled cross-over study of calcium carbonate (1500 mg/d calcium). Calcium and phosphorus balance were determined on a controlled diet. Oral and intravenous 45calcium with blood sampling and urine and fecal collections were used for calcium kinetics. Fasting blood and urine were collected at baseline and end of each week of each balance period for biochemical analyses. Results showed that patients were in neutral calcium and phosphorus balance while on placebo. Calcium carbonate produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance suggesting tissue deposition. Fasting biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. If they can be extrapolated to effects of chronic therapy, these data caution against the use of calcium carbonate as a phosphate binder.
  • Loading...
    Thumbnail Image
    Item
    Racial Differences in Cortical Bone Mass, Size and Estimated Strength at the Tibial Diaphysis in Early Pubertal Children
    (Office of the Vice Chancellor for Research, 2012-04-13) Warden, Stuart J.; Ferira, Ashley J.; Laing, Emma M.; Hill, Kathleen M.; Martin, Berdine R.; Weaver, Connie M.; Peacock, Munro; Lewis, Richard D.
    Osteoporotic fracture rates differ according to race, with blacks having up to half the rate of whites. The reduced fracture rate in blacks has been suggested to be due to their superior bone mass; however, mass is not the sole determinant of bone strength. Bone strength, and consequent fracture risk, is also influenced by how bone material is distributed or structured. It is likely bone structure also contributes to the lower incidence of fractures in blacks and that racial differences in bone structure have roots in childhood. The aim of this study was to assess the influence of race on pQCT-derived cortical bone mass, size and estimated strength at the tibial diaphysis in early pubertal children. 160 children were recruited, with equal subjects according to race (black, n=80; white, n=80) and sex (female, n=80; male, n=80). Subjects were at sexual maturation stages 2 or 3. Tomographic slices of the tibial diaphysis at 66% proximal from the medial malleolus were acquired using pQCT. Slices were assessed for cortical volumetric BMD (Ct.vBMD), cortical BMC (Ct.BMC), total (Tt.Ar) and cortical (Ct.Ar) area, density weighted maximum (IMAX) and minimum (IMIN) second moments of area, density-weighted polar strength-strain index (SSIP), and muscle cross-sectional area (mCSA). Group differences were assessed by two-way analysis of covariance, with race (black vs. white) and sex (female vs. male) as independent variables. Covariates included predicted years from peak height velocity (maturity offset), tibial length and mCSA. There were no interactions between race and sex (all P=0.50-0.98) or main effect for sex (all P=0.08-0.45). Blacks had 15.7% more Ct.BMC, and 10.8-11.8% larger Tt.Ar and Ct.Ar than whites (all P<0.001). The greater enhancement of Ct.BMC relative to Ct.Ar resulted in blacks having 3.6% greater Ct.vBMD than whites (P<0.001). The combination of increased cortical bone mass, size and density in blacks contributed to enhanced estimated bone strength, with IMAX, IMIN and SSIP being 20.0%, 34.5% and 25.2% greater in blacks than whites, respectively (all P<0.001). These data indicate that early pubertal black children have enhanced bone mass, size and estimated bone strength at the tibial diaphysis versus whites, independent of tibial length and mCSA. They suggest bone structural differences may contribute to observed racial differences in fracture rates and that structural divergence between races develops during childhood.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University