ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hile, Karen"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Interleukin-18 stimulates a positive feedback loop during renal obstruction via interleukin-18 receptor
    (Elsevier, 2011-10) VanderBrink, Brian A.; Asanuma, Hiroshi; Hile, Karen; Zhang, Honji; Rink, Richard C.; Meldrum, Kirstan K.; Urology, School of Medicine
    PURPOSE: Interleukin-18 is a proinflammatory cytokine that is an important mediator of obstruction induced renal tubulointerstitial fibrosis independent of tumor necrosis factor-α and β1 activity. We hypothesized that interleukin-18 stimulates a positive feedback loop during obstruction via interleukin-18 receptor to increase interleukin-18 gene expression and protein production. MATERIALS AND METHODS: Male C57BL6 interleukin-18 receptor knockout (The Jackson Laboratory, Bar Harbor, Maine) and control wild-type mice underwent unilateral ureteral obstruction or sham operation and were sacrificed 1 week after surgery. Renal cortical tissue samples were harvested and analyzed for interleukin-18 protein by enzyme-linked immunosorbent assay, and for interleukin-18 and interleukin-18 receptor gene expression by quantitative polymerase chain reaction. The specific cellular localization of interleukin-18 and interleukin-18 receptor expression during obstruction was assessed using dual labeling immunofluorescence staining. RESULTS: Renal interleukin-18 receptor expression increased significantly in wild-type mice in response to obstruction but remained at sham operation levels in interleukin-18 receptor knockout mice. Similarly while interleukin-18 protein and gene expression were significantly increased in wild-type mice in response to obstruction, interleukin-18 levels and gene expression were significantly decreased during obstruction in knockout mice. Obstruction induced interleukin-18 and interleukin-18 receptor production were localized predominantly to tubular epithelial cells and to a lesser extent to the renal interstitium. CONCLUSIONS: Results reveal that interleukin-18 stimulates a positive feedback loop via interleukin-18 receptor during renal obstruction to stimulate interleukin-18 production and gene expression. The predominant cellular source of interleukin-18 production during renal obstruction appears to be tubular epithelial cells rather than infiltrating macrophages.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University