- Browse by Author
Browsing by Author "Hicks, J. Kevin"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Best-worst scaling methodology to evaluate constructs of the Consolidated Framework for Implementation Research: application to the implementation of pharmacogenetic testing for antidepressant therapy.(BMC, 2022-05-14) Salloum, Ramzi G.; Bishop, Jeffrey R.; Elchynski, Amanda L.; Smith, D. Max; Rowe, Elizabeth; Blake, Kathryn V.; Limdi, Nita A.; Aquilante, Christina L.; Bates, Jill; Beitelshees, Amber L.; Cipriani, Amber; Duong, Benjamin Q.; Empey, Philip E.; Formea, Christine M.; Hicks, J. Kevin; Mroz, Pawel; Oslin, David; Pasternak, Amy L.; Petry, Natasha; Ramsey, Laura B.; Schlichte, Allyson; Swain, Sandra M.; Ward, Kristen M.; Wiisanen, Kristin; Skaar, Todd C.; Van Driest, Sara L.; Cavallari, Larisa H.; Tuteja, SonyBACKGROUND: Despite the increased demand for pharmacogenetic (PGx) testing to guide antidepressant use, little is known about how to implement testing in clinical practice. Best-worst scaling (BWS) is a stated preferences technique for determining the relative importance of alternative scenarios and is increasingly being used as a healthcare assessment tool, with potential applications in implementation research. We conducted a BWS experiment to evaluate the relative importance of implementation factors for PGx testing to guide antidepressant use. METHODS: We surveyed 17 healthcare organizations that either had implemented or were in the process of implementing PGx testing for antidepressants. The survey included a BWS experiment to evaluate the relative importance of Consolidated Framework for Implementation Research (CFIR) constructs from the perspective of implementing sites. RESULTS: Participating sites varied on their PGx testing platform and methods for returning recommendations to providers and patients, but they were consistent in ranking several CFIR constructs as most important for implementation: patient needs/resources, leadership engagement, intervention knowledge/beliefs, evidence strength and quality, and identification of champions. CONCLUSIONS: This study demonstrates the feasibility of using choice experiments to systematically evaluate the relative importance of implementation determinants from the perspective of implementing organizations. BWS findings can inform other organizations interested in implementing PGx testing for mental health. Further, this study demonstrates the application of BWS to PGx, the findings of which may be used by other organizations to inform implementation of PGx testing for mental health disorders.Item A Call for Clear and Consistent Communications Regarding the Role of Pharmacogenetics in Antidepressant Pharmacotherapy(Wiley, 2020-01) Hicks, J. Kevin; Bishop, Jeffrey R.; Gammal, Roseann S.; Sangkuhl, Katrin; Bousman, Chad; Leeder, J. Steven; Llerena, Adrián; Mueller, Daniel J.; Ramsey, Laura B.; Scott, Stuart A.; Skaar, Todd C.; Caudle, Kelly E.; Klein, Teri E.; Gaedigk, Andrea; Medicine, School of MedicineItem CHEK2 Founder Variants and Thyroid Cancer Risk(Mary Ann Liebert, 2024) Brock, Pamela; Liynarachchi, Sandya; Nieminen, Taina T.; Chan, Carlos; Kohlmann, Wendy; Stout, Leigh Anne; Yao, Song; La Greca, Amanda; Jensen, Kirk E.; Kolesar, Jill M.; Salhia, Bodour; Gulhati, Pat; Hicks, J. Kevin; Ringel, Matthew D.; Medical and Molecular Genetics, School of MedicineBackground: Germline pathogenic variants in CHEK2 are associated with a moderate increase in the lifetime risk for breast cancer. Increased risk for other cancers, including non-medullary thyroid cancer (NMTC), has also been suggested. To date, data implicating CHEK2 variants in NMTC predisposition primarily derive from studies within Poland, driven by a splice site variant (c.444 + 1G>A) that is uncommon in other populations. In contrast, the predominant CHEK2 variants in non-Polish populations are c.1100del and c.470T>C/p.I157T, representing 61.1% and 63.8%, respectively, of all CHEK2 pathogenic variants in two large U.S.-based commercial laboratory datasets. To further delineate the impact of common CHEK2 variants on thyroid cancer, we aimed to investigate the association of three CHEK2 founder variants (c.444 + 1G>A, c.1100del, and c.470T>C/p.Ile157Thr) on NMTC susceptibility in three groups of unselected NMTC patients. Methods: The presence of three CHEK2 founder variants was assessed within three groups: (1) 1544 NMTC patients (and 1593 controls) from previously published genome-wide association study (GWAS) analyses, (2) 789 NMTC patients with germline exome sequencing (Oncology Research Information Exchange Network [ORIEN] Avatar), and (3) 499 NMTC patients with germline sequence data available in The Cancer Genome Atlas (TCGA). A case-control study design was utilized with odds ratios (ORs) calculated by comparison of all three groups with the Ohio State University GWAS control group. Results: The predominant Polish variant (c.444 + 1G>A) was present in only one case. The proportion of patients with c.1100del was 0.92% in the GWAS group, 1.65% in the ORIEN Avatar group, and 0.80% in the TCGA group. The ORs (with 95% confidence intervals [CIs]) for NMTC associated with c.1100del were 1.71 (0.73-4.29), 2.64 (0.95-7.63), and 2.5 (0.63-8.46), respectively. The proportion of patients with c.470T>C/p.I157T was 0.91% in the GWAS group, 0.76% in the ORIEN Avatar group, and 0.80% in the TCGA group, respectively. The ORs (with CIs) for NMTC associated with c.470T>C/p.I157T were 1.75 (0.74-4.39), 1.52 (0.42-4.96), and 2.31 (0.58-7.90), respectively. Conclusions: Our analyses of unselected patients with NMTC suggest that CHEK2 variants c.1100del and c.470T>C/p.I157T have only a modest impact on thyroid cancer risk. These results provide important information for providers regarding the relatively low magnitude of thyroid cancer risk associated with these CHEK2 variants.Item Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors(Wiley, 2015-08) Hicks, J. Kevin; Bishop, Jeffrey R.; Sangkuhl, Katrin; Müller, Daniel J; Ji, Yuan; Leckband, Susan G.; Leeder, J. Steven; Graham, Rebecca L.; Chiulli, Dana L.; LLerena, Adrián; Skaar, Todd C.; Scott, Stuart A.; Stingl, Julia C.; Klein, Teri E.; Caudle, Kelly E.; Gaedigk, Andrea; Department of Medicine, IU School of MedicineSelective serotonin reuptake inhibitors (SSRIs) are primary treatment options for major depressive and anxiety disorders. CYP2D6 and CYP2C19 polymorphisms can influence the metabolism of SSRIs, thereby affecting drug efficacy and safety. We summarize evidence from the published literature supporting these associations and provide dosing recommendations for fluvoxamine, paroxetine, citalopram, escitalopram, and sertraline based on CYP2D6 and/or CYP2C19 genotype (updates at www.pharmgkb.org).Item Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update(Wiley, 2017-07) Hicks, J. Kevin; Sangkuhl, Katrin; Swen, Jesse J.; Ellingrod, Vicki L.; Müller, Daniel J.; Shimoda, Kazutaka; Bishop, Jeffrey R.; Kharasch, Evan D.; Skaar, Todd C.; Gaedigk, Andrea; Dunnenberger, Henry M.; Klein, Teri E.; Caudle, Kelly E.; Stingl, Julia C.; Medicine, School of MedicineCYP2D6 and CYP2C19 polymorphisms affect the exposure, efficacy and safety of tricyclic antidepressants (TCAs), with some drugs being affected by CYP2D6 only (e.g., nortriptyline and desipramine) and others by both polymorphic enzymes (e.g., amitriptyline, clomipramine, doxepin, imipramine, and trimipramine). Evidence is presented for CYP2D6 and CYP2C19 genotype-directed dosing of TCAs. This document is an update to the 2012 Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Tricyclic Antidepressants.Item Correction: Nelson et al. UGT1A1 Guided Cancer Therapy: Review of the Evidence and Considerations for Clinical Implementation. Cancers 2021, 13, 1566(MDPI, 2024-10-25) Nelson, Ryan S.; Seligson, Nathan D.; Bottiglieri, Sal; Carballido, Estrella; Del Cueto, Alex; Imanirad, Iman; Levine, Richard; Parker, Alexander S.; Swain, Sandra M.; Tillman, Emma M.; Hicks, J. Kevin; Pharmacology and Toxicology, School of MedicineItem Multi-site investigation of strategies for the clinical implementation of CYP2D6 genotyping to guide drug prescribing(Springer Nature, 2019-10) Cavallari, Larisa H.; Van Driest, Sara L.; Prows, Cynthia A.; Bishop, Jeffrey R.; Limdi, Nita A.; Pratt, Victoria M.; Ramsey, Laura B.; Smith, D. Max; Tuteja, Sony; Duong, Benjamin Q.; Hicks, J. Kevin; Lee, James C.; Obeng, Aniwaa Owusu; Beitelshees, Amber L.; Bell, Gillian C.; Blake, Kathryn; Crona, Daniel J.; Dressler, Lynn; Gregg, Ryan A.; Hines, Lindsay J.; Scott, Stuart A.; Shelton, Richard C.; Weitzel, Kristin Wiisanen; Johnson, Julie A.; Peterson, Josh F.; Empey, Philip E.; Skaar, Todd C.; Medical and Molecular Genetics, School of MedicinePURPOSE: A number of institutions have clinically implemented CYP2D6 genotyping to guide drug prescribing. We compared implementation strategies of early adopters of CYP2D6 testing, barriers faced by both early adopters and institutions in the process of implementing CYP2D6 testing, and approaches taken to overcome these barriers. METHODS: We surveyed eight early adopters of CYP2D6 genotyping and eight institutions in the process of adoption. Data were collected on testing approaches, return of results procedures, applications of genotype results, challenges faced, and lessons learned. RESULTS: Among early adopters, CYP2D6 testing was most commonly ordered to assist with opioid and antidepressant prescribing. Key differences among programs included test ordering and genotyping approaches, result reporting, and clinical decision support. However, all sites tested for copy-number variation and nine common variants, and reported results in the medical record. Most sites provided automatic consultation and had designated personnel to assist with genotype-informed therapy recommendations. Primary challenges were related to stakeholder support, CYP2D6 gene complexity, phenotype assignment, and sustainability. CONCLUSION: There are specific challenges unique to CYP2D6 testing given the complexity of the gene and its relevance to multiple medications. Consensus lessons learned may guide those interested in pursuing similar clinical pharmacogenetic programs.Item Multisite evaluation of institutional processes and implementation determinants for pharmacogenetic testing to guide antidepressant therapy.(Wiley, 2022-02) Tuteja, Sony; Salloum, Ramzi G.; Elchynski, Amanda L.; Smith, D. Max; Rowe, Elizabeth; Blake, Kathryn V.; Limdi, Nita A.; Aquilante, Christina L.; Bates, Jill; Beitelshees, Amber L.; Cipriani, Amber; Duong, Benjamin Q.; Empey, Philip E.; Formea, Christine M.; Hicks, J. Kevin; Mroz, Pawel; Oslin, David; Pasternak, Amy L.; Petry, Natasha; Ramsey, Allyson; Swain, Sandra M.; Ward, Kristen M.; Wiisanen, Kristin; Skaar, Todd C.; Van Driest, Sara L.; Cavallari, Larisa H.; Bishop, Jeffrey R.There is growing interest in utilizing pharmacogenetic (PGx) testing to guide antidepressant use, but there is lack of clarity on how to implement testing into clinical practice. We administered two surveys at 17 sites that had implemented or were in the process of implementing PGx testing for antidepressants. Survey 1 collected data on the process and logistics of testing. Survey 2 asked sites to rank the importance of Consolidated Framework for Implementation Research (CFIR) constructs using best-worst scaling choice experiments. Of the 17 sites, 13 had implemented testing and four were in the planning stage. Thirteen offered testing in the outpatient setting, and nine in both outpatient/inpatient settings. PGx tests were mainly ordered by psychiatry (92%) and primary care (69%) providers. CYP2C19 and CYP2D6 were the most commonly tested genes. The justification for antidepressants selected for PGx guidance was based on Clinical Pharmacogenetics Implementation Consortium guidelines (94%) and US Food and Drug Administration (FDA; 75.6%) guidance. Both institutional (53%) and commercial laboratories (53%) were used for testing. Sites varied on the methods for returning results to providers and patients. Sites were consistent in ranking CFIR constructs and identified patient needs/resources, leadership engagement, intervention knowledge/beliefs, evidence strength and quality, and the identification of champions as most important for implementation. Sites deployed similar implementation strategies and measured similar outcomes. The process of implementing PGx testing to guide antidepressant therapy varied across sites, but key drivers for successful implementation were similar and may help guide other institutions interested in providing PGx-guided pharmacotherapy for antidepressant management.Item Multisite investigation of strategies for the clinical implementation of pre-emptive pharmacogenetic testing(Elsevier, 2021) Duarte, Julio D.; Dalton, Rachel; Elchynski, Amanda L.; Smith, D. Max; Cicali, Emily J.; Lee, James C.; Duong, Benjamin Q.; Petry, Natasha J.; Aquilante, Christina L.; Beitelshees, Amber L.; Empey, Philip E.; Johnson, Julie A.; Obeng, Aniwaa Owusu; Pasternak, Amy L.; Pratt, Victoria M.; Ramsey, Laura B.; Tuteja, Sony; Van Driest, Sara L.; Wiisanen, Kristin; Hicks, J. Kevin; Cavallari, Larisa H.; IGNITE Network Pharmacogenetics Working Group; Medical and Molecular Genetics, School of MedicinePurpose: The increased availability of clinical pharmacogenetic (PGx) guidelines and decreasing costs for genetic testing have slowly led to increased utilization of PGx testing in clinical practice. Pre-emptive PGx testing, where testing is performed in advance of drug prescribing, is one means to ensure results are available at the time of prescribing decisions. However, the most efficient and effective methods to clinically implement this strategy remain unclear. Methods: In this report, we compare and contrast implementation strategies for pre-emptive PGx testing by 15 early-adopter institutions. We surveyed these groups, collecting data on testing approaches, team composition, and workflow dynamics, in addition to estimated third-party reimbursement rates. Results: We found that while pre-emptive PGx testing models varied across sites, institutions shared several commonalities, including methods to identify patients eligible for testing, involvement of a precision medicine clinical team in program leadership, and the implementation of pharmacogenes with Clinical Pharmacogenetics Implementation Consortium guidelines available. Finally, while reimbursement rate data were difficult to obtain, the data available suggested that reimbursement rates for pre-emptive PGx testing remain low. Conclusion: These findings should inform the establishment of future implementation efforts at institutions considering a pre-emptive PGx testing program.Item Opportunity for Genotype-Guided Prescribing Among Adult Patients in 11 US Health Systems.(Wiley, 2021-07) Hicks, J. Kevin; El Rouby, Nihal; Ong, Henry H.; Schildcrout, Jonathan S.; Ramsey, Laura B.; Shi, Yaping; Anne Tang, Leigh; Aquilante, Christina L.; Beitelshees, Amber L.; Blake, Kathryn V.; Cimino, James J.; Davis, Brittney H.; Empey, Philip E.; Kao, David P.; Lemkin, Daniel L.; Limdi, Nita A.; P Lipori, Gloria; Rosenman, Marc B.; Skaar, Todd C.; Teal, Evgenia; Tuteja, Sony; Wiley, Laura K.; Williams, Helen; Winterstein, Almut G.; Van Driest, Sara L.; Cavallari, Larisa H.; Peterson, Josh F.The value of utilizing a multigene pharmacogenetic panel to tailor pharmacotherapy is contingent on the prevalence of prescribed medications with an actionable pharmacogenetic association. The Clinical Pharmacogenetics Implementation Consortium (CPIC) has categorized over 35 gene-drug pairs as "level A," for which there is sufficiently strong evidence to recommend that genetic information be used to guide drug prescribing. The opportunity to use genetic information to tailor pharmacotherapy among adult patients was determined by elucidating the exposure to CPIC level A drugs among 11 Implementing Genomics In Practice Network (IGNITE)-affiliated health systems across the US. Inpatient and/or outpatient electronic-prescribing data were collected between January 1, 2011 and December 31, 2016 for patients ≥ 18 years of age who had at least one medical encounter that was eligible for drug prescribing in a calendar year. A median of ~ 7.2 million adult patients was available for assessment of drug prescribing per year. From 2011 to 2016, the annual estimated prevalence of exposure to at least one CPIC level A drug prescribed to unique patients ranged between 15,719 (95% confidence interval (CI): 15,658-15,781) in 2011 to 17,335 (CI: 17,283-17,386) in 2016 per 100,000 patients. The estimated annual exposure to at least 2 drugs was above 7,200 per 100,000 patients in most years of the study, reaching an apex of 7,660 (CI: 7,632-7,687) per 100,000 patients in 2014. An estimated 4,748 per 100,000 prescribing events were potentially eligible for a genotype-guided intervention. Results from this study show that a significant portion of adults treated at medical institutions across the United States is exposed to medications for which genetic information, if available, should be used to guide prescribing.