ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Heydari, Bobby"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Patch-Wise Deep Learning Approach for Myocardial Blood Flow Quantification with Robustness to Noise and Nonrigid Motion
    (IEEE, 2021) Youssef, Khalid; Heydari, Bobby; Rivero, Luis Zamudio; Beaulieu, Taylor; Cheema, Karandeep; Dharmakumar, Rohan; Sharif, Behzad; Medicine, School of Medicine
    Quantitative analysis of dynamic contrast-enhanced cardiovascular MRI (cMRI) datasets enables the assessment of myocardial blood flow (MBF) for objective evaluation of ischemic heart disease in patients with suspected coronary artery disease. State-of-the-art MBF quantification techniques use constrained deconvolution and are highly sensitive to noise and motion-induced errors, which can lead to unreliable outcomes in the setting of high-resolution MBF mapping. To overcome these limitations, recent iterative approaches incorporate spatial-smoothness constraints to tackle pixel-wise MBF mapping. However, such iterative methods require a computational time of up to 30 minutes per acquired myocardial slice, which is a major practical limitation. Furthermore, they cannot enforce robustness to residual nonrigid motion which can occur in clinical stress/rest studies of patients with arrhythmia. We present a non-iterative patch-wise deep learning approach for pixel-wise MBF quantification wherein local spatio-temporal features are learned from a large dataset of myocardial patches acquired in clinical stress/rest cMRI studies. Our approach is scanner-independent, computationally efficient, robust to noise, and has the unique feature of robustness to motion-induced errors. Numerical and experimental results obtained using real patient data demonstrate the effectiveness of our approach.Clinical Relevance- The proposed patch-wise deep learning approach significantly improves the reliability of high-resolution myocardial blood flow quantification in cMRI by improving its robustness to noise and nonrigid myocardial motion and is up to 300-fold faster than state-of-the-art iterative approaches.
  • Loading...
    Thumbnail Image
    Item
    Deep Learning-Based Segmentation and Uncertainty Assessment for Automated Analysis of Myocardial Perfusion MRI Datasets Using Patch-Level Training and Advanced Data Augmentation
    (IEEE, 2021) Yalcinkaya, Dilek Mirgun; Youssef, Khalid; Heydari, Bobby; Zamudio, Luis; Dharmakumar, Rohan; Sharif, Behzad; Medicine, School of Medicine
    In this work, we develop a patch-level training approach and a task-driven intensity-based augmentation method for deep-learning-based segmentation of motion-corrected perfusion cardiac magnetic resonance imaging (MRI) datasets. Further, the proposed method generates an image-based uncertainty map thanks to a novel spatial sliding-window approach used during patch-level training, hence allowing for uncertainty quantification. Using the quantified uncertainty, we detect the out-of-distribution test data instances so that the end-user can be alerted that the test data is not suitable for the trained network. This feature has the potential to enable a more reliable integration of the proposed deep learning-based framework into clinical practice. We test our approach on external MRI data acquired using a different acquisition protocol to demonstrate the robustness of our performance to variations in pulse-sequence parameters. The presented results further demonstrate that our deep-learning image segmentation approach trained with the proposed data-augmentation technique incorporating spatiotemporal (2D+time) patches is superior to the state-of-the-art 2D approach in terms of generalization performance.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University