- Browse by Author
Browsing by Author "Herring, B. Paul"
Now showing 1 - 10 of 26
Results Per Page
Sort Options
Item An Animal Model of Combined Pituitary Hormone Deficiency Disease(2010-08) Colvin, Stephanie C.; Konieczny, Stephen F.; Rhodes, Simon J.; Walvoord, Emily C.; Belecky-Adams, Teri; Herring, B. Paul; Roper, RandallLHX3 is a LIM-homeodomain transcription factor that has essential roles in pituitary and nervous system development in mammals. Children who are homozygous for recessive mutations in the LHX3 gene present with combined pituitary hormone deficiency disease (CPHD) characterized by deficits of multiple anterior pituitary hormones. Most LHX3 patients also present with additional defects associated with the nervous system including a characteristic limited head rotation and sometimes deafness. However, of the 10 types of LHX3 mutation described to date, one mutation type (W224ter) does not result in the limited head rotation, defining a new form of the disease. W224ter patients have CPHD but do not have nervous system symptoms. Whereas other mutations in LHX3 cause loss of the entire protein or its activity, the W224ter mutation causes specific loss of the carboxyl terminal of the LHX3 protein—a region that we have shown to contain critical regulatory domains for pituitary gene activation. To better understand the molecular and cellular etiology of CPHD associated with LHX3 gene mutations, I have generated knock-in mice that model the human LHX3 W224ter disease. The resulting mice display marked dwarfism, thyroid disease, female infertility, and reduced male fertility. Immunohistochemistry, real-time quantitative polymerase chain reaction (PCR), and enzyme-linked immunosorbant assays (ELISA) were used to measure hormones and regulatory factor protein and RNA levels, an approach which is not feasible with human patients. We have generated a novel mouse model of human pediatric CPHD. Our findings are consistent with the hypothesis that the actions of the LHX3 factor are molecularly separable in the nervous system and pituitary gland.Item Critical contribution of KV1 channels to the regulation of coronary blood flow(Springer, 2016-09) Goodwill, Adam G.; Noblet, Jillian N.; Sassoon, Daniel; Fu, Lijuan; Kassab, Ghassan S.; Schepers, Luke; Herring, B. Paul; Rottgen, Trey S.; Tune, Johnathan D.; Dick, Gregory M.; Cellular and Integrative Physiology, School of MedicineIon channels in smooth muscle control coronary vascular tone, but the mechanisms require further investigation. The purpose of this study was to evaluate the functional role of KV1 channels on porcine coronary blood flow by using the selective antagonist correolide. KV1 channel gene transcripts were found in porcine coronary arteries, with KCNA5 (encoding KV1.5) being most abundant (P<0.001). Immunohistochemical staining demonstrated KV1.5 protein in the vascular smooth muscle layer of both porcine and human coronary arteries, including microvessels. Whole-cell patch clamp experiments demonstrated significant correolide-sensitive (1–10 µM) current in coronary smooth muscle. In vivo studies included direct intracoronary infusion of vehicle or correolide into a pressure-clamped left anterior descending artery of healthy swine (n=5 in each group) with simultaneous measurement of coronary blood flow. Intracoronary correolide (~0.3–3 µM targeted plasma concentration) had no effect on heart rate or systemic pressure, but reduced coronary blood flow in a dose-dependent manner (P<0.05). Dobutamine (0.3–10 µg/kg/min) elicited coronary metabolic vasodilation and intracoronary correolide (3 µM) significantly reduced coronary blood flow at any given level of myocardial oxygen consumption (P<0.001). Coronary artery occlusions (15 s) elicited reactive hyperemia and correolide (3 µM) reduced the flow volume repayment by approximately 30% (P<0.05). Taken together, these data support a major role for KV1 channels in modulating baseline coronary vascular tone and perhaps vasodilation in response to increased metabolism and transient ischemia.Item Death-Associated Protein Kinase Regulates Vascular Smooth Muscle Cell Signaling and Migration(2011-03-16) Blue, Emily Keller; Gallagher, Patricia J.; Elmendorf, Jeffrey S.; Herring, B. Paul; Rhodes, Simon J.; Thurmond, Debbie C.Cardiovascular disease is the number one cause of death for Americans. New treatments are needed for serious conditions like atherosclerosis, as it can lead to stroke and heart attack. Many types of cells contribute to the progression of cardiovascular disease, including smooth muscle cells that comprise the middle layers of arteries. Inappropriate growth and migration of smooth muscle cells into the lumen of arteries has been implicated in vascular diseases. Death associated protein kinase (DAPK) is a protein that has been found to regulate the survival and migration of cancer cells, but has not been well characterized in vascular cells. The objective of this work was to determine the signaling pathways that DAPK regulates in smooth muscle cells. These studies have focused on smooth muscle cells isolated from human coronary arteries (HCASM cells). We have determined that HCASM cells depleted of DAPK exhibit more rapid migration, showing that DAPK negatively regulates migration of vascular cells. Results from a focused RT-PCR array identified matrix metalloproteinase 9 (MMP9) as a gene that is increased in cells depleted of DAPK. MMP9 is an important enzyme that degrades collagen, a component of the extracellular matrix through which smooth muscle cells migrate during atherosclerosis. We found that DAPK regulates phosphorylation of the NF-kappa B transcription factor p65 at serine 536, a modification previously found to correlate with increased nuclear levels and activity of p65. In DAPK-depleted HCASM cells, there was more phosphorylation of p65, which causes increased MMP9 promoter activity. Additional experiments were conducted using transgenic mice in which the DAPK gene has been deleted. By studying these mice, we have determined that under some circumstances DAPK augments maximal MMP9 levels in mouse carotid arteries which have been injured by ligation surgery via other signaling pathways. MMP9 has been previously implicated as a protein that promotes vascular diseases such as atherosclerosis. Our research in identifying DAPK as a regulator of MMP9 expression identifies a new target for treatment of vascular diseases like atherosclerosis.Item Differentiation and contractility of colon smooth muscle under normal and diabetic conditions(2013-10-07) Touw, Ketrija; Herring, B. Paul; Gallagher, Patricia J.; Rhodes, Simon J.; Considine, Robert V.Intestinal smooth muscle development involves complex transcriptional regulation leading to cell differentiation of the circular, longitudinal and muscularis mucosae layers. Differentiated intestinal smooth muscle cells express high levels of smooth muscle-specific contractile and regulatory proteins, including telokin. Telokin is regulatory protein that is highly expressed in visceral smooth muscle. Analysis of cis-elements required for transcriptional regulation of the telokin promoter by using hypoxanthine-guanine phosphoribosyltransferase (Hprt)-targeted reporter transgenes revealed that a 10 base pair large CC(AT)₆GG ciselement, called CArG box is required for promoter activity in all tissues. We also determined that an additional 100 base pair region is necessary for transgene activity in intestinal smooth muscle cells. To examine how transcriptional regulation of intestinal smooth muscle may be altered under pathological conditions we examined the effects of diabetes on colonic smooth muscle. Approximately 76% of diabetic patients develop gastrointestinal (GI) symptoms such as constipation due to intestinal dysmotility. Mice were treated with low-dose streptozotocin to induce a type 1 diabetes-like hyperglycemia. CT scans revealed decreased overall GI tract motility after 7 weeks of hyperglycemia. Acute (1 week) and chronic (7 weeks) diabetic mice also had decreased potassium chloride (KCl)-induced colon smooth muscle contractility. We hypothesized that decreased smooth muscle contractility at least in part, was due to alteration of contractile protein gene expression. However, diabetic mice showed no changes in mRNA or protein levels of smooth muscle contractile proteins. We determined that the decreased colonic contractility was associated with an attenuated intracellular calcium increase, as measured by ratio-metric imaging of Fura-2 fluorescence in isolated colonic smooth muscle strips. This attenuated calcium increase resulted in decreased myosin light chain phosphorylation, thus explaining the decreased contractility of the colon. Chronic diabetes was also associated with increased basal calcium levels. Western blotting and quantitative real time polymerase chain reaction (qRT-PCR) analysis revealed significant changes in calcium handling proteins in chronic diabetes that were not seen in the acute state.These changes most likely reflect compensatory mechanisms activated by the initial impaired calcium response. Overall my results suggest that type 1 diabetes in mice leads to decreased colon motility in part due to altered calcium handling without altering contractile protein expression.Item Forkhead box F2 Regulation of Platelet-Derived Growth Factor and myocardin/Serum Response Factor Signaling is Essential for Intestinal Development(2015-03) Bolte, Craig; Ren, Xiaomeng; Tomley, Tatiana; Ustiyan, Vladimir; Pradhan, Arun; Hoggatt, April; Kalin, Tanya V.; Herring, B. Paul; Kalinichenko, Vladimir V.; Department of Cellular & Integrative Physiology, IU School of MedicineAlterations in the forkhead box F2 gene expression have been reported in numerous pathologies, and Foxf2−/− mice are perinatal lethal with multiple malformations; however, molecular mechanisms pertaining to Foxf2 signaling are severely lacking. In this study, Foxf2 requirements in murine smooth muscle cells were examined using a conditional knock-out approach. We generated novel Foxf2-floxed mice, which we bred to smMHC-Cre-eGFP mice to generate a mouse line with Foxf2 deleted specifically from smooth muscle. These mice exhibited growth retardation due to reduced intestinal length as well as inflammation and remodeling of the small intestine. Colons of Tg(smMHC-Cre-eGFP+/−);Foxf2−/− mice had expansion of the myenteric nerve plexus and increased proliferation of smooth muscle cells leading to thickening of the longitudinal smooth muscle layer. Foxf2 deficiency in colonic smooth muscle was associated with increased expression of Foxf1, PDGFa, PDGFb, PDGF receptor α, and myocardin. FOXF2 bound to promoter regions of these genes indicating direct transcriptional regulation. Foxf2 repressed Foxf1 promoter activity in co-transfection experiments. We also show that knockdown of Foxf2 in colonic smooth muscle cells in vitro and in transgenic mice increased myocardin/serum response factor signaling and increased expression of contractile proteins. Foxf2 attenuated myocardin/serum response factor signaling in smooth muscle cells through direct binding to the N-terminal region of myocardin. Our results indicate that Foxf2 signaling in smooth muscle cells is essential for intestinal development and serum response factor signaling.Item Gastroparesis is associated with decreased FOXF1 and FOXF2 in humans, and loss of FOXF1 and FOXF2 results in gastroparesis in mice(Wiley, 2019-02) Herring, B. Paul; Hoggatt, April M.; Gupta, Anita; Wo, John M.; Cellular and Integrative Physiology, School of MedicineBackground and Aims The transcription factors FOXF1 and FOXF2 have been implicated in the development of the gastrointestinal tract but their role in adults or in gastrointestinal diseases is poorly understood. We have recently shown that expression of serum response factor (SRF), a transcription factor whose activity is modulated by FOXF proteins, is decreased in the stomach muscularis of patients with gastroparesis. The aim of the current study was to determine whether FOXF expression is decreased in gastroparesis patients and whether loss of FOXF1 and/or FOXF2 from adult smooth muscle is sufficient to impair gastric emptying in mice. Methods Full‐thickness stomach biopsy samples were collected from control subjects and from patients with gastroparesis. mRNA was isolated from the muscularis externa, and FOXF mRNA expression levels were determined by quantitative reverse transcriptase (RT)‐PCR. Foxf1 and Foxf2 were knocked out together and separately from smooth muscle cells in adult mice, and the subsequent effect on liquid gastric emptying and contractile protein expression was determined. Key Results Expression of FOXF1 and FOXF2 is decreased in smooth muscle tissue from gastroparesis patients. Knockout of Foxf1 and Foxf2 together, but not alone, from mouse smooth muscle resulted in delayed liquid gastric emptying. Foxf1/2 double knockout mice had decreased expression of smooth muscle contractile proteins, SRF, and myocardin in stomach muscularis. Conclusions and Inferences Our findings suggest that decreased expression of FOXF1 and FOXF2 may be contributing to the impaired gastric emptying seen in gastroparesis patients.Item Glycogen metabolism in Lafora disease(2018-02) Contreras, Christopher J.; Roach, Peter J.; DePaoli-Roach, Anna A.; Hurley, Thomas D.; Herring, B. PaulGlycogen, a branched polymer of glucose, serves as an osmotically neutral means of storing glucose. Covalent phosphate is a trace component of mammalian glycogen and has been a point of interest with respect to Lafora disease, a fatal form of juvenile myoclonus epilepsy. Mutations in either the EPM2A or EPM2B genes, which encode laforin and malin respectively, account for ~90% of disease cases. A characteristic of Lafora disease is the formation of Lafora bodies, which are mainly composed of an excess amount of abnormal glycogen that is poorly branched and insoluble. Laforin-/- and malin-/- knockout mice share several characteristics of the human disease, formation of Lafora bodies in various tissues, increased glycogen phosphorylation and development of neurological symptoms. The source of phosphate in glycogen has been an area of interest and here we provide evidence that glycogen synthase is capable of incorporating phosphate into glycogen. Mice lacking the glycogen targeting subunit PTG of the PP1 protein phosphatase have decreased glycogen stores in a number of tissues. When crossed with mice lacking either laforin or malin, the double knockout mice no longer over-accumulate glycogen, Lafora body formation is almost absent and the neurological disorders are normalized. Another question has been whether the abnormal glycogen in the Lafora disease mouse models can be metabolized. Using exercise to provoke glycogen degradation, we show that in laforin-/- and malin-/- mice the insoluble, abnormal glycogen appears to be metabolically inactive. These studies suggest that a therapeutic approach to Lafora disease may be to reduce the overall glycogen levels in cells so that insoluble, metabolically inert pools of the polysaccharide do not accumulate.Item Identification of a Minimal Cis-element and Cognate Trans-factors Required for the Regulation of Rac2 Gene Expression during K562 Cell Differentiation(2009-03-18T18:48:49Z) Muthukrishnan, Rajarajeswari; Skalnik, David; Herring, B. Paul; Rhodes, Simon J.; Wek, Ronald C.This dissertation examines the molecular mechanisms regulating Rac2 gene expression during cell differentiation and identification of a minimal cis-element required for the induction of Rac2 gene expression during K562 cell differentiation. The Rho family GTPase Rac2 is expressed in hematopoietic cell lineages and is further up-regulated upon terminal myeloid cell differentiation. Rac2 plays an important role in many hematopoietic cellular functions, such as neutrophil chemotaxis, superoxide production, cytoskeletal reorganization, and stem cell adhesion. Despite the crucial role of Rac2 in blood cell function, little is known about the mechanisms of Rac2 gene regulation during blood cell differentiation. Previous studies from the Skalnik lab determined that a human Rac2 gene fragment containing the 1.6 kb upstream and 8 kb downstream sequence directs lineage-specific expression of Rac2 in transgenic mice. In addition, epigenetic modifications such as DNA methylation also play important roles in the lineage-specific expression of Rac2. The current study investigated the molecular mechanisms regulating human Rac2 gene expression during cell differentiation using chemically induced megakaryocytic differentiation of the human chronic myelogenous leukemia cell line K562 as the model system. Phorbol 12-myristate 13-acetate (PMA) stimulation of K562 cells resulted in increased Rac2 mRNA expression as analyzed by real time-polymerase chain reaction (RT-PCR). Luciferase reporter gene assays revealed that increased transcriptional activity of the Rac2 gene is mediated by the Rac2 promoter region. Nested 5’- deletions of the promoter region identified a critical regulatory region between -4223 bp and -4008 bp upstream of the transcription start site. Super shift and chromatin immunoprecipitation assays indicated binding by the transcription factor AP1 to three distinct binding sites within the 135 bp minimal regulatory region. PMA stimulation of K562 cells led to extensive changes in chromatin structure, including increased histone H3 acetylation, within the 135 bp Rac2 cis-element. These findings provide evidence for the interplay between epigenetic modifications, transcription factors and cis-acting regulatory elements within the Rac2 gene promoter region to regulate Rac2 expression during K562 cell differentiation.Item Idiopathic gastroparesis is associated with specific transcriptional changes in the gastric muscularis externa(Wiley, 2018-04) Herring, B. Paul; Hoggatt, April M.; Gupta, Anita; Griffith, Sarah; Nakeeb, Attila; Choi, Jennifer N.; Idrees, Muhammad T.; Nowak, Thomas; Morris, David L.; Wo, John M.; Cellular and Integrative Physiology, School of MedicineBACKGROUND: The molecular changes that occur in the stomach that are associated with idiopathic gastroparesis are poorly described. The aim of this study was to use quantitative analysis of mRNA expression to identify changes in mRNAs encoding proteins required for the normal motility functions of the stomach. METHODS: Full-thickness stomach biopsy samples were collected from non-diabetic control subjects who exhibited no symptoms of gastroparesis and from patients with idiopathic gastroparesis. mRNA was isolated from the muscularis externa and mRNA expression levels were determined by quantitative reverse transcriptase (RT)-PCR. KEY RESULTS: Smooth muscle tissue from idiopathic gastroparesis patients had decreased expression of mRNAs encoding several contractile proteins, such as MYH11 and MYLK1. Conversely, there was no significant change in mRNAs characteristic of interstitial cells of Cajal (ICCs) such as KIT or ANO1. There was also a significant decrease in mRNA-encoding platelet-derived growth factor receptor α (PDGFRα) and its ligand PDGFB and in Heme oxygenase 1 in idiopathic gastroparesis subjects. In contrast, there was a small increase in mRNA characteristic of neurons. Although there was not an overall change in KIT expression in gastroparesis patients, KIT expression showed a significant correlation with gastric emptying whereas changes in MYLK1, ANO1 and PDGFRα showed weak correlations to the fullness/satiety subscore of patient assessment of upper gastrointestinal disorder-symptom severity index scores. CONCLUSIONS AND INFERENCES: Our findings suggest that idiopathic gastroparesis is associated with altered smooth muscle cell contractile protein expression and loss of PDGFRα+ cells without a significant change in ICCs.Item In vivo analysis of human LHX3 enhancer regulation(2013-03) Park, Soyoung; Rhodes, Simon J.; Day, Richard N.; Harrington, Maureen A.; Herring, B. Paul; Skalnik, David GordonThe LHX3 transcription factor is essential for pituitary gland and nervous system development in mammals. In humans, mutations in the LHX3 gene underlie combined pituitary hormone deficiency (CPHD) disease featuring deficits in anterior pituitary hormones and defects in the nervous system. The mechanisms that control temporal and spatial expression of the LHX3 gene are poorly understood. The proximal promoters of the human LHX3 gene are insufficient to guide expression in vivo and downstream elements including a conserved 7.9 kilobase (kb) enhancer region appear to play a role in tissue-specific expression in the pituitary and nervous system. In this study, I characterized the activity of this downstream enhancer region in regulating gene expression at the cellular level during development. Human LHX3 enhancer-driven Cre reporter transgenic mice were generated to facilitate studies of enhancer actions. The downstream LHX3 enhancer primarily guides gene transcription in αGSU-expressing cells secreting the TSHβ, LHβ or FSHβ hormones and expressing the GATA2 and SF1 transcription factors. In the developing nervous system, the enhancer serves as a targeting module for expression specifically in V2a interneurons. These results demonstrate that the downstream LHX3 enhancer is important in specific endocrine and neural cell types but also indicate that additional regulatory elements are likely involved in LHX3 gene expression in other cell types. Further, these studies demonstrate significant gonadotrope cell heterogeneity during pituitary development, providing insights into the cellular physiology of this key reproductive regulatory cell. The human LHX3 enhancer-driven Cre reporter transgenic mice provide a valuable tool for further developmental studies of cell determination and differentiation in the pituitary and nervous system. Furthermore understanding the regulation of human LHX3 gene will help develop tools to better diagnose and treat pituitary CPHD disease.
- «
- 1 (current)
- 2
- 3
- »