ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Henske, Elizabeth P."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Drug Inhibition of Redox Factor-1 Restores Hypoxia-Driven Changes in Tuberous Sclerosis Complex 2 Deficient Cells
    (MDPI, 2022-12-15) Champion, Jesse D.; Dodd, Kayleigh M.; Lam, Hilaire C.; Alzahrani, Mohammad A. M.; Seifan, Sara; Rad, Ellie; Scourfield, David Oliver; Fishel, Melissa L.; Calver, Brian L.; Ager, Ann; Henske, Elizabeth P.; Davies, David Mark; Kelley, Mark R.; Tee, Andrew R.; Pediatrics, School of Medicine
    Therapies with the mechanistic target of rapamycin complex 1 (mTORC1) inhibitors are not fully curative for tuberous sclerosis complex (TSC) patients. Here, we propose that some mTORC1-independent disease facets of TSC involve signaling through redox factor-1 (Ref-1). Ref-1 possesses a redox signaling activity that stimulates the transcriptional activity of STAT3, NF-kB, and HIF-1α, which are involved in inflammation, proliferation, angiogenesis, and hypoxia, respectively. Here, we demonstrate that redox signaling through Ref-1 contributes to metabolic transformation and tumor growth in TSC cell model systems. In TSC2-deficient cells, the clinically viable Ref-1 inhibitor APX3330 was effective at blocking the hyperactivity of STAT3, NF-kB, and HIF-1α. While Ref-1 inhibitors do not inhibit mTORC1, they potently block cell invasion and vasculature mimicry. Of interest, we show that cell invasion and vasculature mimicry linked to Ref-1 redox signaling are not blocked by mTORC1 inhibitors. Metabolic profiling revealed that Ref-1 inhibitors alter metabolites associated with the glutathione antioxidant pathway as well as metabolites that are heavily dysregulated in TSC2-deficient cells involved in redox homeostasis. Therefore, this work presents Ref-1 and associated redox-regulated transcription factors such as STAT3, NF-kB, and HIF-1α as potential therapeutic targets to treat TSC, where targeting these components would likely have additional benefits compared to using mTORC1 inhibitors alone.
  • Loading...
    Thumbnail Image
    Item
    Genetic Risk Assessment for Hereditary Renal Cell Carcinoma: Clinical Consensus Statement
    (Wiley, 2021) Bratslavsky, Gennady; Mendhiratta, Neil; Daneshvar, Michael; Brugarolas, James; Ball, Mark W.; Metwalli, Adam; Nathanson, Katherine L.; Pierorazio, Phillip M.; Boris, Ronald S.; Singer, Eric A.; Carlo, Maria I.; Daly, Mary B.; Henske, Elizabeth P.; Hyatt, Colette; Middleton, Lindsay; Morris, Gloria; Jeong, Anhyo; Narayan, Vivek; Rathmell, W. Kimryn; Vaishampayan, Ulka; Lee, Bruce H.; Battle, Dena; Hall, Michael J.; Hafez, Khaled; Jewett, Michael A.S.; Karamboulas, Christina; Pal, Sumanta K.; Hakimi, A. Ari; Kutikov, Alexander; Iliopoulos, Othon; Linehan, W. Marston; Jonasch, Eric; Srinivasan, Ramaprasad; Shuch, Brian; Urology, School of Medicine
    Background: Although renal cell carcinoma (RCC) is believed to have a strong hereditary component, there is a paucity of published guidelines for genetic risk assessment. A panel of experts was convened to gauge current opinions. Methods: A North American multidisciplinary panel with expertise in hereditary RCC, including urologists, medical oncologists, clinical geneticists, genetic counselors, and patient advocates, was convened. Before the summit, a modified Delphi methodology was used to generate, review, and curate a set of consensus questions regarding RCC genetic risk assessment. Uniform consensus was defined as ≥85% agreement on particular questions. Results: Thirty-three panelists, including urologists (n = 13), medical oncologists (n = 12), genetic counselors and clinical geneticists (n = 6), and patient advocates (n = 2), reviewed 53 curated consensus questions. Uniform consensus was achieved on 30 statements in specific areas that addressed for whom, what, when, and how genetic testing should be performed. Topics of consensus included the family history criteria, which should trigger further assessment, the need for risk assessment in those with bilateral or multifocal disease and/or specific histology, the utility of multigene panel testing, and acceptance of clinician-based counseling and testing by those who have experience with hereditary RCC. Conclusions: In the first ever consensus panel on RCC genetic risk assessment, 30 consensus statements were reached. Areas that require further research and discussion were also identified, with a second future meeting planned. This consensus statement may provide further guidance for clinicians when considering RCC genetic risk assessment. Lay summary: The contribution of germline genetics to the development of renal cell carcinoma (RCC) has long been recognized. However, there is a paucity of guidelines to define how and when genetic risk assessment should be performed for patients with known or suspected hereditary RCC. Without guidelines, clinicians struggle to define who requires further evaluation, when risk assessment or testing should be done, which genes should be considered, and how counseling and/or testing should be performed. To this end, a multidisciplinary panel of national experts was convened to gauge current opinion on genetic risk assessment in RCC and to enumerate a set of recommendations to guide clinicians when evaluating individuals with suspected hereditary kidney cancer.
  • Loading...
    Thumbnail Image
    Item
    Renal cell carcinoma in tuberous sclerosis complex
    (Ovid Technologies (Wolters Kluwer) - Lippincott Williams & Wilkins, 2014-07) Yang, Ping; Cornejo, Kristine M.; Sadow, Peter M.; Cheng, Liang; Wang, Mingsheng; Xiao, Yu; Jiang, Zhong; Oliva, Esther; Jozwiak, Sergiusz; Nussbaum, Robert L.; Feldman, Adam S.; Paul, Elahna; Thiele, Elizabeth A.; Yu, Jane J.; Henske, Elizabeth P.; Kwiatkowski, David J.; Young, Robert H.; Wu, Chin-Lee; Department of Pathology & Laboratory Medicine, IU School of Medicine
    Renal cell carcinoma (RCC) occurs in 2% to 4% of patients with tuberous sclerosis complex (TSC). Previous reports have noted a variety of histologic appearances in these cancers, but the full spectrum of morphologic and molecular features has not been fully elucidated. We encountered 46 renal epithelial neoplasms from 19 TSC patients and analyzed their clinical, pathologic, and molecular features, enabling separation of these 46 tumors into 3 groups. The largest subset of tumors (n=24) had a distinct morphologic, immunologic, and molecular profile, including prominent papillary architecture and uniformly deficient succinate dehydrogenase subunit B (SDHB) expression prompting the novel term "TSC-associated papillary RCC (PRCC)." The second group (n=15) were morphologically similar to a hybrid oncocytic/chromophobe tumor (HOCT), whereas the last 7 renal epithelial neoplasms of group 3 remained unclassifiable. The TSC-associated PRCCs had prominent papillary architecture lined by clear cells with delicate eosinophilic cytoplasmic thread-like strands that occasionally appeared more prominent and aggregated to form eosinophilic globules. All 24 (100%) of these tumors were International Society of Urological Pathology (ISUP) nucleolar grade 2 or 3 with mostly basally located nuclei. Tumor cells from 17 of 24 TSC-associated PRCCs showed strong, diffuse labeling for carbonic anhydrase IX (100%), CK7 (94%), vimentin (88%), and CD10 (83%) and were uniformly negative for SDHB, TFE3, and AMACR. Gains of chromosomes 7 and 17 were found in 2 tumors, whereas chromosome 3p deletion and TFE3 translocations were not detected. In this study, we reported a sizable cohort of renal tumors seen in TSC and were able to identify them as different morphotypes, which may help to expand the morphologic spectrum of TSC-associated RCC.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University