ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Henderson, Victor W."

Now showing 1 - 8 of 8
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Adverse Social Exposome by Area Deprivation Index (ADI) and Alzheimer’s Disease and Related Dementias (ADRD) Neuropathology for a National Cohort of Brain Donors within the Neighborhoods Study
    (Wiley, 2025-01-09) Kind, Amy J. H.; Bendlin, Barbara B.; Keller, Sarah A.; Powell, W. Ryan; DeWitt, Amanda; Cheng, Yixuan; Chamberlain, Luke; Lyons Boone, Brittney; Miller, Megan J.; Vik, Stacie M.; Abner, Erin L.; Alosco, Michael L.; Apostolova, Liana G.; Bakulski, Kelly M.; Barnes, Lisa L.; Bateman, James R.; Beach, Thomas G.; Bennett, David A.; Brewer, James B.; Carrion, Carmen; Chodosh, Joshua; Craft, Suzanne; Croff, Raina; Fabio, Anthony; Tomaszewski Farias, Sarah; Goldstein, Felicia; Henderson, Victor W.; Karikari, Thomas; Kofler, Julia; Kucharska-Newton, Anna M.; Lamar, Melissa; Lanata, Serggio; Lepping, Rebecca J.; Lingler, Jennifer H.; Lockhart, Samuel N.; Mahnken, Jonathan D.; Marsh, Karyn; Meyer, Oanh L.; Miller, Bruce L.; Morris, Jill K.; Neugroschl, Judith A.; O'Connor, Maureen K.; Paulson, Henry L.; Perrin, Richard J.; Pierce, Aimee; Raji, Cyrus A.; Reiman, Eric M.; Risacher, Shannon L.; Rissman, Robert A.; Rodriguez Espinoza, Patricia; Sano, Mary; Saykin, Andrew J.; Serrano, Geidy E.; Sultzer, David L.; Whitmer, Rachel A.; Wisniewski, Thomas; Woltjer, Randall; Zhu, Carolyn W.; Neurology, School of Medicine
    Background: Adverse social exposome (indexed by high national Area Deprivation Index [ADI]) is linked to structural inequities and increased risk of clinical dementia diagnosis, yet linkage to ADRD neuropathology remains largely unknown. Early work from single site brain banks suggests a relationship, but assessment in large national cohorts is needed to increase generalizability and depth, particularly for rarer neuropathology findings. Objective: Determine the association between adverse social exposome by ADI and ADRD neuropathology for brain donors from 21 Alzheimer’s Disease Research Center (ADRC) brain banks as part of the on‐going Neighborhoods Study. Methods: All brain donors in participating sites with neuropathology data deposited at the National Alzheimer’s Coordinating Center (NACC) and identifiers for ADI linkage (N = 8,637; Figure 1) were included. Geocoded donor addresses were linked to time‐concordant national ADI percentiles for year of death, categorized into standard groupings of low (ADI 1‐19), medium (20‐49) and high (50‐100) ADI. Neuropathological findings were drawn from NACC and reflected standard assessment practices at time of donation. Logistic regression models, adjusted for sex and age at death, assessed relationships between high ADI and neuropathology findings. Results: Of the N = 8,637 brain donors (Table 1), 2,071 of 2,366 assessed (88%) had AD pathology by NIA‐AA criteria; 4,197 of 6,929 assessed (61%) had cerebral amyloid angiopathy; 2582 of 8092 assessed (32%) had Lewy body pathology; 391 of 2351 assessed (17%) had non‐AD tauopathy; and 586 of 1680 assessed (35%) had TDP‐43 pathology. 2,126(25%) were high ADI; 3,171(37%) medium ADI and 3,340(38%) low ADI with 51% female and average age at death of 81.9 years. As compared to low ADI donors, high ADI brain donors had adjusted odds = 1.35 (95% CI = 0.98‐1.86, p‐value = 0.06) for AD pathology; 1.10 (0.98–1.25, p = 0.11) for cerebral amyloid angiopathy; 1.37 (1.21–1.55, p<0.01) for Lewy body; 1.09 (0.83–1.44, p = 0.53) for non‐AD tauopathy; and 1.40 (1.08‐1.81, p = 0.01) for TDP‐43 pathology (Table 2). Conclusions: This first‐in‐field study provides evidence that the adverse social exposome (high ADI) is strongly associated with an increased risk of Lewy body, an increased risk of TDP‐43, and a trend towards increased AD pathology in a national cohort of brain donors.
  • Loading...
    Thumbnail Image
    Item
    Amyloid PET predicts longitudinal functional and cognitive trajectories in a heterogeneous cohort
    (Wiley, 2025) Younes, Kyan; Johns, Emily; Young, Christina B.; Kennedy, Gabriel; Mukherjee, Shubhabrata; Vossler, Hillary A.; Winer, Joseph; Cody, Karly; Henderson, Victor W.; Poston, Kathleen L.; Betthauser, Tobey J.; Bevis, Bill; Brooks, William M.; Burns, Jeffrey M.; Coombes, Stephen A.; DeCarli, Charles; DiFilippo, Frank P.; Duara, Ranjan; Fan, Audrey P.; Gibbons, Laura E.; Golde, Todd; Johnson, Sterling C.; Lepping, Rebecca J.; Leverenz, James; McDougall, Sean; Rogalski, Emily; Sanders, Elizabeth; Pasaye, Joshua; Sridhar, Jaiashre; Saykin, Andrew J.; Sridharan, Anjali; Swerdlow, Russell; Trittschuh, Emily H.; Vaillancourt, David; Vidoni, Eric; Wang, Wei-En; Mez, Jesse; Hohman, Timothy J.; Tosun, Duygu; Biber, Sarah; Kukull, Walter A.; Crane, Paul K.; Mormino, Elizabeth C.; Radiology and Imaging Sciences, School of Medicine
    Introduction: Amyloid positron emission tomography (PET) is increasingly available for diagnosis of Alzheimer`s disease (AD); however, its practical implications in heterogenous cohorts are debated. Methods: Amyloid PET from 890 National Alzheimer`s Coordinating Center participants with up to 10 years post-PET follow up was analyzed. Cox proportional hazards and linear mixed models were used to investigate amyloid burden prediction of etiology and prospective functional status and cognitive decline. Results: Amyloid positivity was associated with progression from unimpaired to mild cognitive impairment and dementia. Amyloid burden in the unimpaired group was associated with lower initial memory levels and faster decline in memory, language, and global cognition. In the Impaired group, amyloid was associated with lower initial levels and faster decline for memory, language, executive function, and global cognition. Discussion: Amyloid burden is an important prognostic marker in a clinically heterogeneous cohort. Future work is needed to establish the proportion of decline driven by AD versus non-AD processes in the context of mixed pathology. Highlights: Our findings highlight the importance of amyloid positron emission tomography (PET) in heterogenous cohorts, including diverse demographics, clinical syndromes, and underlying etiologies. The results also provide evidence that higher amyloid levels were linked to functional progression from unimpaired cognition to mild cognitive impairment (MCI) and from MCI to dementia. In cognitively unimpaired individuals, higher amyloid burden was associated with poorer memory at baseline and subsequent declines in memory, language, and global cognition. Among individuals with cognitive impairment, amyloid burden was associated with worse initial memory, language, executive function, and global cognition, and faster declines over time.
  • Loading...
    Thumbnail Image
    Item
    Asian Cohort for Alzheimer's Disease (ACAD) pilot study on genetic and non-genetic risk factors for Alzheimer's disease among Asian Americans and Canadians
    (Wiley, 2024) Ho, Pei-Chuan; Yu, Wai Haung; Tee, Boon Lead; Lee, Wan-Ping; Li, Clara; Gu, Yian; Yokoyama, Jennifer S.; Reyes-Dumeyer, Dolly; Choi, Yun-Beom; Yang, Hyun-Sik; Vardarajan, Badri N.; Tzuang, Marian; Lieu, Kevin; Lu, Anna; Faber, Kelley M.; Potter, Zoë D.; Revta, Carolyn; Kirsch, Maureen; McCallum, Jake; Mei, Diana; Booth, Briana; Cantwell, Laura B.; Chen, Fangcong; Chou, Sephera; Clark, Dewi; Deng, Michelle; Hong, Ting Hei; Hwang, Ling-Jen; Jiang, Lilly; Joo, Yoonmee; Kang, Younhee; Kim, Ellen S.; Kim, Hoowon; Kim, Kyungmin; Kuzma, Amanda B.; Lam, Eleanor; Lanata, Serggio C.; Lee, Kunho; Li, Donghe; Li, Mingyao; Li, Xiang; Liu, Chia-Lun; Liu, Collin; Liu, Linghsi; Lupo, Jody-Lynn; Nguyen, Khai; Pfleuger, Shannon E.; Qian, James; Qian, Winnie; Ramirez, Veronica; Russ, Kristen A.; Seo, Eun Hyun; Song, Yeunjoo E.; Tartaglia, Maria Carmela; Tian, Lu; Torres, Mina; Vo, Namkhue; Wong, Ellen C.; Xie, Yuan; Yau, Eugene B.; Yi, Isabelle; Yu, Victoria; Zeng, Xiaoyi; St. George-Hyslop, Peter; Au, Rhoda; Schellenberg, Gerard D.; Dage, Jeffrey L.; Varma, Rohit; Hsiung, Ging-Yuek R.; Rosen, Howard; Henderson, Victor W.; Foroud, Tatiana; Kukull, Walter A.; Peavy, Guerry M.; Lee, Haeok; Feldman, Howard H.; Mayeux, Richard; Chui, Helena; Jun, Gyungah R.; Ta Park, Van M.; Chow, Tiffany W.; Wang, Li-San; Medical and Molecular Genetics, School of Medicine
    Introduction: Clinical research in Alzheimer's disease (AD) lacks cohort diversity despite being a global health crisis. The Asian Cohort for Alzheimer's Disease (ACAD) was formed to address underrepresentation of Asians in research, and limited understanding of how genetics and non-genetic/lifestyle factors impact this multi-ethnic population. Methods: The ACAD started fully recruiting in October 2021 with one central coordination site, eight recruitment sites, and two analysis sites. We developed a comprehensive study protocol for outreach and recruitment, an extensive data collection packet, and a centralized data management system, in English, Chinese, Korean, and Vietnamese. Results: ACAD has recruited 606 participants with an additional 900 expressing interest in enrollment since program inception. Discussion: ACAD's traction indicates the feasibility of recruiting Asians for clinical research to enhance understanding of AD risk factors. ACAD will recruit > 5000 participants to identify genetic and non-genetic/lifestyle AD risk factors, establish blood biomarker levels for AD diagnosis, and facilitate clinical trial readiness. Highlights: The Asian Cohort for Alzheimer's Disease (ACAD) promotes awareness of under-investment in clinical research for Asians. We are recruiting Asian Americans and Canadians for novel insights into Alzheimer's disease. We describe culturally appropriate recruitment strategies and data collection protocol. ACAD addresses challenges of recruitment from heterogeneous Asian subcommunities. We aim to implement a successful recruitment program that enrolls across three Asian subcommunities.
  • Loading...
    Thumbnail Image
    Item
    Asian Cohort for Alzheimer’s Disease (ACAD) Study on Genetic and Non‐Genetic Risk Factors for Alzheimer’s Disease among Asian Americans and Canadians
    (Wiley, 2025-01-09) Wang, Li-San; Ho, Pei-Chuan; Tee, Boon Lead; Li, Clara; Gu, Yian; Yokoyama, Jennifer S.; Reyes-Dumeyer, Dolly; Faber, Kelley M.; Lee, Wan-Ping; Song, Yeunjoo E.; Tzuang, Marian; Vardarajan, Badri N.; Yang, Hyun-Sik; Choi, Yun-Beom; Feldman, Howard H.; Grill, Joshua D.; Henderson, Victor W.; Hsiung, Ging-Yuek Robin; Mayeux, Richard; Rosen, Howard J.; Varma, Rohit; Foroud, Tatiana M.; Kukull, Walter A.; Peavy, Guerry M.; Lee, Haeok; Yu, W. Haung; Chui, Helena C.; Jun, Gyungah R.; Park, Van Ta; Chow, Tiffany W.; The Asian Cohort for Alzheimer’s Disease Study; Medicine, School of Medicine
    Background: Asian Americans and Asian Canadians (ASACs) are the fastest growing minority group in the US and Canada. However, ASACs are under‐sampled in Alzheimer’s disease (AD) research. To address the need of culturally appropriate clinical protocols and community‐based recruitment approaches for ASACs, the Asian Cohort for Alzheimer’s Disease (ACAD), the first large dementia genetics cohort focusing on Chinese, Korean, and Vietnamese, launched in 2021 to examine genetic and non‐genetic risk factors for AD among ASACs. Our clinical and community‐based participatory research (CPBR) scientists have a long collaborative history and diverse cultural and scientific training backgrounds: both are critical in leading AD and CBPR research. Method: Upon receipt of an NIA U19 grant in 2023, ACAD has expanded to 9 recruiting sites (7 US and 2 Canadian), a coordinating site, and an analysis site with a centralized data management system. ACAD developed a comprehensive study protocol including community outreach and recruitment strategies, the data collection packet (DCP), pre‐screening and sample collection procedures, and in English, Chinese (Mandarin and Cantonese), Korean, and Vietnamese. To ensure consistency, ACAD implemented a training curriculum for data/sample collect and for culturally appropriate recruitment approaches in collaboration with community partners, clinics, and nursing homes serving Asian communities. Result: As of December 2023, more than 2,400 people expressed interests in ACAD. A total of 683 of the 899 consented participants completed DCP data into the REDCap (604 Chinese, 54 Korean, and 25 Vietnamese), while 399 saliva samples and 285 blood samples were received. Participants aged 60 –103 years at enrollment, 67% were female, and 47% reported having a college or above education. Currently, ACAD is revising the study protocol in response to feedback received in its pilot phase, including the need to include additional neuropsychological tests and cultural tailored lifestyle questionnaires with an emphasis on immigration experiences. Conclusion: The ACAD team (including community partners) have learned valuable lessons and demonstrated the feasibility of recruiting ASACs in clinical research. With an expansion plan and in collaboration with other AD research focuses on racial minority populations, insights from ACAD may identify potential novel, population‐specific therapeutic pathways for AD.
  • Loading...
    Thumbnail Image
    Item
    Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel
    (American Medical Association, 2021-01-01) Kunkle, Brian W.; Schmidt, Michael; Klein, Hans-Ulrich; Naj, Adam C.; Hamilton-Nelson, Kara L.; Larson, Eric B.; Evans, Denis A.; De Jager, Phil L.; Crane, Paul K.; Buxbaum, Joe D.; Ertekin-Taner, Nilufer; Go, Rodney C.P.; Obisesan, Thomas O.; Kamboh, Ilyas; Bennett, David A.; Hall, Kathleen S.; Goate, Alison M.; Foroud, Tatiana M.; Martin, Eden R.; Wang, Li-Sao; Byrd, Goldie S.; Farrer, Lindsay A.; Haines, Jonathan L.; Schellenberg, Gerard D.; Mayeux, Richard; Pericak-Vance, Margaret A.; Reitz, Christiane; Graff-Radford, Neill R.; Martinez, Izri; Ayodele, Temitope; Logue, Mark W.; Cantwell, Laura B.; Jean-Francois, Melissa; Kuzma, Amanda B.; Adams, L.D.; Vance, Jeffery M.; Cuccaro, Michael L.; Chung, Jaeyoon; Mez, Jesse; Lunetta, Kathryn L.; Jun, Gyungah R.; Lopez, Oscar L.; Hendrie, Hugh C.; Reiman, Eric M.; Kowall, Neil W.; Leverenz, James B.; Small, Scott A.; Levey, Allan I.; Golde, Todd E.; Saykin, Andrew J.; Starks, Takiyah D.; Albert, Marilyn S.; Hyman, Bradley T.; Petersen, Ronald C.; Sano, Mary; Wisniewski, Thomas; Vassar, Robert; Kaye, Jeffrey A.; Henderson, Victor W.; DeCarli, Charles; LaFerla, Frank M.; Brewer, James B.; Miller, Bruce L.; Swerdlow, Russell H.; Van Eldik, Linda J.; Paulson, Henry L.; Trojanowski, John Q.; Chui, Helena C.; Rosenberg, Roger N.; Craft, Suzanne; Grabowski, Thomas J.; Asthana, Sanjay; Morris, John C.; Strittmatter, Stephen M.; Kukull, Walter A.; Psychiatry, School of Medicine
    Importance: Compared with non-Hispanic White individuals, African American individuals from the same community are approximately twice as likely to develop Alzheimer disease. Despite this disparity, the largest Alzheimer disease genome-wide association studies to date have been conducted in non-Hispanic White individuals. In the largest association analyses of Alzheimer disease in African American individuals, ABCA7, TREM2, and an intergenic locus at 5q35 were previously implicated. Objective: To identify additional risk loci in African American individuals by increasing the sample size and using the African Genome Resource panel. Design, setting, and participants: This genome-wide association meta-analysis used case-control and family-based data sets from the Alzheimer Disease Genetics Consortium. There were multiple recruitment sites throughout the United States that included individuals with Alzheimer disease and controls of African American ancestry. Analysis began October 2018 and ended September 2019. Main outcomes and measures: Diagnosis of Alzheimer disease. Results: A total of 2784 individuals with Alzheimer disease (1944 female [69.8%]) and 5222 controls (3743 female [71.7%]) were analyzed (mean [SD] age at last evaluation, 74.2 [13.6] years). Associations with 4 novel common loci centered near the intracellular glycoprotein trafficking gene EDEM1 (3p26; P = 8.9 × 10-7), near the immune response gene ALCAM (3q13; P = 9.3 × 10-7), within GPC6 (13q31; P = 4.1 × 10-7), a gene critical for recruitment of glutamatergic receptors to the neuronal membrane, and within VRK3 (19q13.33; P = 3.5 × 10-7), a gene involved in glutamate neurotoxicity, were identified. In addition, several loci associated with rare variants, including a genome-wide significant intergenic locus near IGF1R at 15q26 (P = 1.7 × 10-9) and 6 additional loci with suggestive significance (P ≤ 5 × 10-7) such as API5 at 11p12 (P = 8.8 × 10-8) and RBFOX1 at 16p13 (P = 5.4 × 10-7) were identified. Gene expression data from brain tissue demonstrate association of ALCAM, ARAP1, GPC6, and RBFOX1 with brain β-amyloid load. Of 25 known loci associated with Alzheimer disease in non-Hispanic White individuals, only APOE, ABCA7, TREM2, BIN1, CD2AP, FERMT2, and WWOX were implicated at a nominal significance level or stronger in African American individuals. Pathway analyses strongly support the notion that immunity, lipid processing, and intracellular trafficking pathways underlying Alzheimer disease in African American individuals overlap with those observed in non-Hispanic White individuals. A new pathway emerging from these analyses is the kidney system, suggesting a novel mechanism for Alzheimer disease that needs further exploration. Conclusions and relevance: While the major pathways involved in Alzheimer disease etiology in African American individuals are similar to those in non-Hispanic White individuals, the disease-associated loci within these pathways differ.
  • Loading...
    Thumbnail Image
    Item
    Over‐Representation of Extremely Wealthy Neighborhood Social Exposomes for Brain Donors within Alzheimer’s Disease Research Center Brain Banks assessed by the Neighborhoods Study
    (Wiley, 2025-01-09) Kind, Amy J. H.; Bendlin, Barbara B.; Powell, W. Ryan; DeWitt, Amanda; Cheng, Yixuan; Chamberlain, Luke; Sharrow, Jessica; Lyons Boone, Brittney; Abner, Erin L.; Alosco, Michael L.; Apostolova, Liana G.; Bakulski, Kelly M.; Barnes, Lisa L.; Bateman, James R.; Beach, Thomas G.; Bennett, David A.; Brewer, James B.; Carrion, Carmen; Chodosh, Joshua; Craft, Suzanne; Croff, Raina; Fabio, Anthony; Tomaszewski Farias, Sarah; Goldstein, Felicia; Henderson, Victor W.; Karikari, Thomas K.; Kofler, Julia; Kucharska-Newton, Anna M.; Lamar, Melissa; Lanata, Serggio; Lepping, Rebecca J.; Lingler, Jennifer H.; Lockhart, Samuel N.; Mahnken, Jonathan D.; Marsh, Karyn; Meyer, Oanh L.; Miller, Bruce L.; Morris, Jill K.; Neugroschl, Judith A.; O'Connor, Maureen K.; Paulson, Henry L.; Perrin, Richard J.; Pettigrew, Corinne; Pierce, Aimee; Raji, Cyrus A.; Reiman, Eric M.; Risacher, Shannon L.; Rissman, Robert A.; Rodriguez Espinoza, Patricia; Sano, Mary; Saykin, Andrew J.; Serrano, Geidy E.; Soldan, Anja; Sultzer, David L.; Whitmer, Rachel A.; Wisniewski, Thomas; Woltjer, Randall; Zhu, Carolyn W.; Radiology and Imaging Sciences, School of Medicine
    Background: Adverse social exposome (indexed by national Area Deprivation Index [ADI] 80‐100 or ‘high ADI’) is linked to structural inequities and increased risk of Alzheimer’s disease neuropathology. Twenty percent of the US population resides within high ADI areas, predominantly in inner cities, tribal reservations and rural areas. The percentage of brain donors from high ADI areas within the Alzheimer’s Disease Research Center (ADRC) brain bank system is unknown. Objective: Determine ADI for brain donors from 21 ADRC sites as part of the on‐going Neighborhoods Study. Methods: All brain donors in participating ADRC sites with NACC neuropathology data and personal identifiers for ADI linkage (N = 8,637) were included (Figure 1). Geocoded donor addresses were linked to time‐concordant ADI percentiles for year of death. Results: Overall, only 5.6% of ADRC brain donors (N = 488) resided in a high ADI (disadvantaged) neighborhood at death. The remaining donors resided in more advantaged neighborhoods, with nearly 40% of donors living in the wealthiest quintile of neighborhoods, and over 300 brain donors originating from the wealthiest 1% of US neighborhoods (Figure 2). Donors from high ADI (disadvantaged) neighborhoods identified as 87% White (n = 424), 11% Black (55), 1% Multiracial (6) and <1% other/unknown race (3), with 1% Hispanic (5). None identified as American Indian/Alaska Native or Native Hawaiian/Pacific Islander/Asian. In comparison, donors from low ADI neighborhoods were 94% White (n = 7680), 3% Black (273), 1% Multiracial (75), <1% American Indian/Alaska Native (11), <1% Native Hawaiian/Pacific Islander/Asian (60), and <1% other/unknown race (50), with 3% Hispanic (230). Sex distribution was similar (54%, 51% female, respectively). Inclusion of high ADI donors varied dramatically across the 21 ADRC brain banks from a low of 0.6% to high of 20% of all a site’s donors (Figure 3). Conclusions: ADI was determined for over 8,600 brain donors in the ADRC system, demonstrating a marked over‐representation of donors from very low ADI (extremely wealthy) neighborhoods, in addition to site‐to‐site variability. This is the first time a comprehensive cross‐sectional social exposome assessment of this nature has been performed, opening windows for additional mechanistic study of the social exposome on brain pathology. Life course ADI assessments are on‐going.
  • Loading...
    Thumbnail Image
    Item
    Raloxifene for women with Alzheimer disease: A randomized controlled pilot trial
    (Wolters Kluwer, 2015-12) Henderson, Victor W.; Ala, Tom; Sainani, Kristin L.; Bernstein, Allan L.; Stephenson, B. Sue; Rosen, Allyson C.; Farlow, Martin R.; Department of Neurology, IU School of Medicine
    OBJECTIVE: To determine whether raloxifene, a selective estrogen receptor modulator, improves cognitive function compared with placebo in women with Alzheimer disease (AD) and to provide an estimate of cognitive effect. METHODS: This pilot study was conducted as a randomized, double-blind, placebo-controlled trial, with a planned treatment of 12 months. Women with late-onset AD of mild to moderate severity were randomly allocated to high-dose (120 mg) oral raloxifene or identical placebo provided once daily. The primary outcome compared between treatment groups at 12 months was change in the Alzheimer's Disease Assessment Scale, cognitive subscale (ADAS-cog). RESULTS: Forty-two women randomized to raloxifene or placebo were included in intent-to-treat analyses (mean age 76 years, range 68-84), and 39 women contributed 12-month outcomes. ADAS-cog change scores at 12 months did not differ significantly between treatment groups (standardized difference 0.03, 95% confidence interval -0.39 to 0.44, 2-tailed p = 0.89). Raloxifene and placebo groups did not differ significantly on secondary analyses of dementia rating, activities of daily living, behavior, or a global cognition composite score. Caregiver burden and caregiver distress were similar in both groups. CONCLUSIONS: Results on the primary outcome showed no cognitive benefits in the raloxifene-treated group. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for women with AD, raloxifene does not have a significant cognitive effect. The study lacked the precision to exclude a small effect.
  • Loading...
    Thumbnail Image
    Item
    The Advisory Group on Risk Evidence Education for Dementia: Multidisciplinary and Open to All
    (IOS Press, 2022) Rosen, Allyson C.; Arias, Jalayne J.; Ashford, J. Wesson; Blacker, Deborah; Chhatwal, Jasmeer P.; Chin, Nathan A.; Clark, Lindsay; Denny, Sharon S.; Goldman, Jill S.; Gleason, Carey E.; Grill, Joshua D.; Heidebrink, Judith L.; Henderson, Victor W.; Lavacot, James A.; Lingler, Jennifer H.; Menon, Malavika; Nosheny, Rachel L.; Oliveira, Fabricio F.; Parker, Monica W.; Rahman-Filipiak, Annalise; Revoori, Anwita; Rumbaugh, Malia C.; Sanchez, Danurys L.; Schindler, Suzanne E.; Schwarz, Christopher G.; Toy, Leslie; Tyrone, Jamie; Walter, Sarah; Wang, Li-san; Wijsman, Ellen M.; Zallen, Doris T.; Aggarwal, Neelum T.; Medical and Molecular Genetics, School of Medicine
    The brain changes of Alzheimer’s disease and other degenerative dementias begin long before cognitive dysfunction develops, and in people with subtle cognitive complaints, clinicians often struggle to predict who will develop dementia. The public increasingly sees benefits to accessing dementia risk evidence (DRE) such as biomarkers, predictive algorithms, and genetic information, particularly as this information moves from research to demonstrated usefulness in guiding diagnosis and clinical management. For example, the knowledge that one has high levels of amyloid in the brain may lead one to seek amyloid reducing medications, plan for disability, or engage in health promoting behaviors to fight cognitive decline. Researchers often hesitate to share DRE data, either because they are insufficiently validated or reliable for use in individuals, or there are concerns about assuring responsible use and ensuring adequate understanding of potential problems when one’s biomarker status is known. Concerns include warning people receiving DRE about situations in which they might be compelled to disclose their risk status potentially leading to discrimination or stigma. The Advisory Group on Risk Evidence Education for Dementia (AGREEDementia) welcomes all concerned with how best to share and use DRE. Supporting understanding in clinicians, stakeholders, and people with or at risk for dementia and clearly delineating risks, benefits, and gaps in knowledge is vital. This brief overview describes elements that made this group effective as a model for other health conditions where there is interest in unfettered collaboration to discuss diagnostic uncertainty and the appropriate use and communication of health-related risk information.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University