- Browse by Author
Browsing by Author "Hellwege, Jacklyn N."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Association of genetically-predicted placental gene expression with adult blood pressure traits(Wolters Kluwer, 2023) Hellwege, Jacklyn N.; Stallings, Sarah C.; Piekos, Jacqueline A.; Jasper, Elizabeth A.; Aronoff, David M.; Edwards, Todd L.; Velez Edwards, Digna R.; Medicine, School of MedicineObjective: Blood pressure is a complex, polygenic trait, and the need to identify prehypertensive risks and new gene targets for blood pressure control therapies or prevention continues. We hypothesize a developmental origins model of blood pressure traits through the life course where the placenta is a conduit mediating genomic and nongenomic transmission of disease risk. Genetic control of placental gene expression has recently been described through expression quantitative trait loci (eQTL) studies which have identified associations with childhood phenotypes. Methods: We conducted a transcriptome-wide gene expression analysis estimating the predicted gene expression of placental tissue in adult individuals with genome-wide association study (GWAS) blood pressure summary statistics. We constructed predicted expression models of 15 154 genes from reference placenta eQTL data and investigated whether genetically-predicted gene expression in placental tissue is associated with blood pressure traits using published GWAS summary statistics. Functional annotation of significant genes was generated using FUMA. Results: We identified 18, 9, and 21 genes where predicted expression in placenta was significantly associated with systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP), respectively. There were 14 gene-tissue associations (13 unique genes) significant only in placenta. Conclusions: In this meta-analysis using S-PrediXcan and GWAS summary statistics, the predicted expression in placenta of 48 genes was statistically significantly associated with blood pressure traits. Notable findings included the association of FGFR1 expression with increased SBP and PP. This evidence of gene expression variation in placenta preceding the onset of adult blood pressure phenotypes is an example of extreme preclinical biological changes which may benefit from intervention.Item Genetically-predicted placental gene expression is associated with birthweight and adult body mass index(Springer Nature, 2023-01-06) Jasper, Elizabeth A.; Hellwege, Jacklyn N.; Piekos, Jacqueline A.; Jones, Sarah H.; Hartmann, Katherine E.; Mautz, Brian; Aronoff, David M.; Edwards, Todd L.; Velez Edwards, Digna R.; Medicine, School of MedicineThe placenta is critical to human growth and development and has been implicated in health outcomes. Understanding the mechanisms through which the placenta influences perinatal and later-life outcomes requires further investigation. We evaluated the relationships between birthweight and adult body mass index (BMI) and genetically-predicted gene expression in human placenta. Birthweight genome-wide association summary statistics were obtained from the Early Growth Genetics Consortium (N = 298,142). Adult BMI summary statistics were obtained from the GIANT consortium (N = 681,275). We used S-PrediXcan to evaluate associations between the outcomes and predicted gene expression in placental tissue and, to identify genes where placental expression was exclusively associated with the outcomes, compared to 48 other tissues (GTEx v7). We identified 24 genes where predicted placental expression was significantly associated with birthweight, 15 of which were not associated with birthweight in any other tissue. One of these genes has been previously linked to birthweight. Analyses identified 182 genes where placental expression was associated with adult BMI, 110 were not associated with BMI in any other tissue. Eleven genes that had placental gene expression levels exclusively associated with BMI have been previously associated with BMI. Expression of a single gene, PAX4, was associated with both outcomes exclusively in the placenta. Inter-individual variation of gene expression in placental tissue may contribute to observed variation in birthweight and adult BMI, supporting developmental origins hypothesis.