ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Heineke, Joerg"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis
    (Springer, 2021-04-19) Dittrich, Gesine M.; Froese, Natali; Wang, Xue; Kroeger, Hannah; Wang, Honghui; Szaroszyk, Malgorzata; Malek‑Mohammadi, Mona; Cordero, Julio; Keles, Merve; Korf‑Klingebiel, Mortimer; Wollert, Kai C.; Geffers, Robert; Mayr, Manuel; Conway, Simon J.; Dobreva, Gergana; Bauersachs, Johann; Heineke, Joerg; Pediatrics, School of Medicine
    Heart failure due to high blood pressure or ischemic injury remains a major problem for millions of patients worldwide. Despite enormous advances in deciphering the molecular mechanisms underlying heart failure progression, the cell-type specific adaptations and especially intercellular signaling remain poorly understood. Cardiac fibroblasts express high levels of cardiogenic transcription factors such as GATA-4 and GATA-6, but their role in fibroblasts during stress is not known. Here, we show that fibroblast GATA-4 and GATA-6 promote adaptive remodeling in pressure overload induced cardiac hypertrophy. Using a mouse model with specific single or double deletion of Gata4 and Gata6 in stress activated fibroblasts, we found a reduced myocardial capillarization in mice with Gata4/6 double deletion following pressure overload, while single deletion of Gata4 or Gata6 had no effect. Importantly, we confirmed the reduced angiogenic response using an in vitro co-culture system with Gata4/6 deleted cardiac fibroblasts and endothelial cells. A comprehensive RNA-sequencing analysis revealed an upregulation of anti-angiogenic genes upon Gata4/6 deletion in fibroblasts, and siRNA mediated downregulation of these genes restored endothelial cell growth. In conclusion, we identified a novel role for the cardiogenic transcription factors GATA-4 and GATA-6 in heart fibroblasts, where both proteins act in concert to promote myocardial capillarization and heart function by directing intercellular crosstalk.
  • Loading...
    Thumbnail Image
    Item
    Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and inflammation
    (American Society for Clinical Investigation, 2019-07-16) Scharf, Gesine M.; Kilian, Katja; Cordero, Julio; Wang, Yong; Grund, Andrea; Hofmann, Melanie; Froese, Natali; Wang, Xue; Kispert, Andreas; Kist, Ralf; Conway, Simon J.; Geffers, Robert; Wollert, Kai C.; Dobreva, Gergana; Bauersachs, Johann; Heineke, Joerg; Pediatrics, School of Medicine
    Fibrotic scarring drives the progression of heart failure after myocardial infarction (MI). Therefore, the development of specific treatment regimens to counteract fibrosis is of high clinical relevance. The transcription factor SOX9 functions as an important regulator during embryogenesis, but recent data point towards an additional causal role in organ fibrosis. We show here that SOX9 is upregulated in the scar after MI in mice. Fibroblast specific deletion of Sox9 ameliorated MI-induced left ventricular dysfunction, dilatation and myocardial scarring in vivo. Unexpectedly, deletion of Sox9 also potently eliminated persisting leukocyte infiltration of the scar in the chronic phase after MI. RNA-sequencing from the infarct scar revealed that Sox9 deletion in fibroblasts resulted in strongly downregulated expression of genes related to extracellular matrix, proteolysis and inflammation. Importantly, Sox9 deletion in isolated cardiac fibroblasts in vitro similarly affected gene expression as in the cardiac scar and reduced fibroblast proliferation, migration and contraction capacity. Together, our data demonstrate that fibroblast SOX9 functions as a master regulator of cardiac fibrosis and inflammation and might constitute a novel therapeutic target during MI.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University