- Browse by Author
Browsing by Author "Hayes, Dermot J."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item China-U.S. trade dispute and its impact on global agricultural markets, the U.S. economy, and greenhouse gas emissions(Wiley, 2021) Elobeid, Amani; Carriquiry, Miguel; Dumortier, Jerome; Swenson, David; Hayes, Dermot J.; School of Public and Environmental AffairsChina is a major importer of agricultural products and we examine retaliatory tariffs imposed by China on U.S. pork, soybeans, corn, and wheat. We use an agricultural trade model to determine the impacts on agricultural commodity markets and combine our results with an input-output model to measure economic effects in the United States. In addition, we calculate global greenhouse gas (GHG) emissions from land-use change. The consequences of retaliatory tariffs are both trade destruction (lower overall trade) and trade diversion (trade diverted away from the U.S. and to other exporting countries). By the end of the projection period, total U.S. pork exports decline by 4.7%. Total soybean and wheat exports decrease by 31.2% and 0.5%, respectively whereas corn exports increases by 4.0%. Domestic U.S. retail pork prices decline by 0.8% and commodity farm prices decrease by 4.2%, 5.1%, and 15.8% for corn, wheat, and soybeans, respectively. The decline in foreign demand reduces U.S. production and welfare. Key among these impacts are a loss of nearly 15,400 jobs and a fall in labor income by $1.35 billion due to a $3.70 billion decline in national output at the beginning of the projection period. By the last year of the projection, the impacts grow to almost 30,000 fewer jobs and $2.31 billion less labor income. The U.S. economy experiences a loss of slightly under $6.80 billion in national output. Changes in trade due to the tariffs result in a reduction of GHG emissions from land-use change of up to 83.7 teragram (Tg) of CO2-equivalent.Item The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions(Office of the Vice Chancellor for Research, 2013-04-05) Dumortier, Jerome; Hayes, Dermot J.; Carriquiry, Miguel; Dong, Fengzia; Du, Xiaodong; Elobeid, Amani; Fabiosa, Jacinto F.; Martin, Pamela A.; Mulik, KrantiWith climate change becoming an increasingly pressing issue together with a world population of 7 billion people in 2011, significant pressure is put on global agriculture and forestry. Although treated separately in national GHG inventories, there is little doubt that both categories are closely linked and climate policies targeting agriculture will have spillover effects on forestry and vice versa. Hence, the implementation of large-scale agricultural policies is prone to unintended consequences. For this poster, we analyze the hypothesis that a reduction of cattle in the U.S. causes a net increase in GHG emissions on a global scale. We couple a global agricultural production and trade model with a greenhouse gas model to assess leakage associated with modified beef production in the United States. The effects on emissions from agricultural production (i.e., methane and nitrous oxide emissions from livestock and crop management) as well as from land-use change, especially grazing system, are assessed. We find that a reduction of U.S. beef production induces net carbon emissions from global land-use change ranging from 37 to 85 kg CO2-equivalent per kg of beef annualized over 20 years. The increase in emissions is caused by an inelastic domestic demand as well as more land-intensive cattle production systems internationally. Changes in livestock production systems such as increasing stocking rate could partially offset emission increases from pasture expansion. In addition, net emissions from enteric fermentation increase because methane emissions per kilogram of beef tend to be higher globally.Item Global land-use and carbon emission implications from biochar application to cropland in the United States(Elsevier, 2020-06) Dumortier, Jerome; Dokoohaki, Hamze; Elobeid, Amani; Hayes, Dermot J.; Laird, David; Miguez, Fernando E.; School of Public and Environmental AffairsBiochar has the potential to increase crop yields when applied to agricultural land. We integrate agronomic and economic simulation models to determine the expected yield increase from biochar applications in the United States. We calculate the location-specific willingness to pay of U.S. farmers to apply biochar to their cropland if biochar increases yields over 20 years. In addition to the potential benefit of higher revenue for farmers, biochar applications also have policy implications if biochar production is combined with bio-fuel production or used to reduce greenhouse gas emissions from indirect land-use change. Thus, the results are then combined with an agricultural outlook model to determine the effects on global land-use change and net carbon emissions. Our results indicate that biochar application is most profitable for croplands in the Southeast U.S. due to the combination of high yield increases and availability of biomass to produce biochar. An increase in U.S. yields above trend by 1% for corn, soybeans, and wheat would decrease net total global emissions by 25–87 Tg of CO2-equivalent.Item Impact of different bioenergy crops on area allocation and cellulosic ethanol feedstock mix.(2013-04) Dumortier, Jerome; Hayes, Dermot J.; Carriquiry, Miguel; Dong, Fengxia; Du, Xiaodong; Elobeid, Amani; Fabiosa, Jacinto F.; Martin, Pamela A.; Mulik, KrantiItem Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity(Elsevier, 2014-04) Kauffman, Nathan; Dumortier, Jerome; Hayes, Dermot J.; Brown, Robert C.; Laird, David A.; School of Public and Environmental AffairsA partial solution to problems associated with anthropogenic greenhouse gas (GHG) emissions could be the development and deployment of carbon-negative technologies, i.e., producing energy while reducing atmospheric carbon dioxide levels. Biofuels have been considered a possibility but have faced limitations due to competition with food production and GHG emissions through indirect land-use change (ILUC). In this article, we show how emissions from ILUC can potentially be reduced by producing food and bioenergy from biochar amended soils. The possibility of yield improvements from biochar would reduce the land requirement for crop production and thus, lead to a reduction in emissions from ILUC. In our application, biochar and bio-oil are produced via fast pyrolysis of corn stover. Bio-oil is subsequently upgraded into a fuel suitable for use in internal combustion engines. Applying the U.S. regulatory method used to determine biofuel life cycle emissions, our results show that a biochar-induced yield improvement in the U.S. Midwest ranging from 1% to 8% above trend can lead to an ILUC credit between 1.65 and 14.79 t CO2-equivalent ha−1 year−1 when future emissions are assessed over the next 30 years. The model is generalizable to other feedstocks and locations and illustrates the relationship between biochar and crop production.Item Production and Spatial Distribution of Switchgrass and Miscanthus in the United States under Uncertainty and Sunk Cost(Elsevier, 2017-08) Dumortier, Jerome; Kauffman, Nathan; Hayes, Dermot J.; School of Public and Environmental AffairsThe U.S. cellulosic biofuel mandate has not been enforced in recent years. Uncertainty surrounding the enforcement of the mandate in addition to high production and harvest cost have contributed to a delay in the widespread planting of bioenergy crops such as switchgrass and miscanthus. Previous literature has shown that under uncertainty and sunk cost, an investment threshold is further increased due to the value associated from holding the investment option. In this paper, we extend the previous literature by applying a real option switching model to bioenergy crop production. First, we calculate the county-level break-even price which triggers a switching away from traditional field crops (corn, soybeans, and wheat) to bioenergy crops under various scenarios differing by commodity prices, production cost and biomass price expectations. We show that the resulting break-even prices at the county-level can be substantially higher than previously estimated due to the inclusion of the option value. In a second step, we identify counties that are most likely to grow switchgrass or miscanthus by simulating a stochastic biomass price over time. Our results highlight two issues: First, switchgrass or miscanthus are not grown in the Midwest under any scenario. Under low agricultural residue removal rates, biomass crops are mostly grown in the Southeast. Second, under the assumption of a high removal rates, bioenergy crops are not grown anywhere in the U.S. since the cellulosic biofuel mandate can be covered by agricultural residues.