- Browse by Author
Browsing by Author "Hawley, Eric T."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Chemopreventative celecoxib fails to prevent schwannoma formation or sensorineural hearing loss in genetically engineered murine model of neurofibromatosis type 2(Impact Journals, 2017-10-24) Wahle, Benjamin M.; Hawley, Eric T.; He, Yongzheng; Smith, Abbi E.; Yuan, Jin; Masters, Andi R.; Jones, David R.; Gehlhausen, Jeffrey R.; Park, Su-Jung; Conway, Simon J.; Clapp, D. Wade; Yates, Charles W.; Otolaryngology -- Head and Neck Surgery, School of MedicineMutations in the tumor suppressor gene NF2 lead to Neurofibromatosis type 2 (NF2), a tumor predisposition syndrome characterized by the development of schwannomas, including bilateral vestibular schwannomas with complete penetrance. Recent work has implicated the importance of COX-2 in schwannoma growth. Using a genetically engineered murine model of NF2, we demonstrate that selective inhibition of COX-2 with celecoxib fails to prevent the spontaneous development of schwannomas or sensorineural hearing loss in vivo, despite elevated expression levels of COX-2 in Nf2-deficient tumor tissue. These results suggest that COX-2 is nonessential to schwannomagenesis and that the proposed tumor suppressive effects of NSAIDs on schwannomas may occur through COX-2 independent mechanisms.Item Ketotifen Modulates Mast Cell Chemotaxis to Kit-Ligand, but Does Not Impact Mast Cell Numbers, Degranulation, or Tumor Behavior in Neurofibromas of Nf1-Deficient Mice(American Association for Cancer Research, 2019-12-01) Burks, Ciersten A.; Rhodes, Steven D.; Bessler, Waylan K.; Chen, Shi; Smith, Abbi; Gehlhausen, Jeffrey R.; Hawley, Eric T.; Jiang, Li; Li, Xiaohong; Yuan, Jin; Lu, Qingbo; Jacobsen, Max; Sandusky, George E.; Jones, David R.; Clapp, D. Wade; Blakeley, Jaishri O.; Pediatrics, School of MedicineNeurofibromatosis Type 1 (NF1) is one of the most common genetic tumor predisposition syndromes in humans. Mutant NF1 results in dysregulated RAS allowing neoplasms throughout the neuroaxis. Plexiform neurofibromas (pNFs) afflict up to 50% of patients with NF1. They are complex tumors of the peripheral nerve that cause major morbidity via nerve dysregulation and mortality via conversion to malignant sarcoma. Genetically engineered mouse models (GEMMs) of NF1 provide valuable insights for the identification of therapies that have utility in people with pNF. Preclinical studies in GEMMs implicate mast cells and the c-Kit/Kit ligand pathway in pNF tumorigenesis. Kit ligand is a potent chemokine secreted by tumorigenic, Nf1-deficient Schwann cells. Ketotifen is an FDA-approved drug for the treatment of allergic conjunctivitis and asthma that promotes mast cell stabilization and has been used in prior case studies to treat or prevent pNFs. This study investigated the effect of ketotifen on mast cell infiltration and degranulation in the presence and absence of Kit ligand provocation and the effect of ketotifen on shrinking or preventing pNF formation in the Nf1flox/flox;PostnCre+ GEMM. Ketotifen decreased mast cell infiltration in response to exogenous Kit ligand administration, but did not affect mast cell degranulation. Importantly, ketotifen did not reduce mast cells numbers or activity in pNF and did not prevent pNF formation or decrease the volume of established pNF despite administration of pharmacologically active doses. These findings suggest ketotifen has limited use as monotherapy to prevent or reduce pNF burden in the setting of Nf1 mutations.Item The TNF-family ligand TL1A and its receptor DR3 promote T cell-mediated allergic immunopathology by enhancing differentiation and pathogenicity of IL-9-producing T cells(The American Association of Immunologists, 2015-04-15) Richard, Arianne C.; Tan, Cuiyan; Hawley, Eric T.; Gomez-Rodriguez, Julio; Goswami, Ritobrata; Yang, Xiang-ping; Cruz, Anthony C.; Penumetcha, Pallavi; Hayes, Erika T.; Pelletier, Martin; Gabay, Odile; Walsh, Matthew; Ferdinand, John R.; Keane-Myers, Andrea; Choi, Yongwon; O'Shea, John J.; Al-Shamkhani, Aymen; Kaplan, Mark H.; Gery, Igal; Siegel, Richard M.; Meylan, Françoise; Department of Pediatrics, School of MedicineThe TNF family cytokine TL1A (Tnfsf15) costimulates T cells and type 2 innate lymphocytes (ILC2) through its receptor DR3 (Tnfrsf25). DR3-deficient mice have reduced T cell accumulation at the site of inflammation and reduced ILC2-dependent immune responses in a number of models of autoimmune and allergic diseases. In allergic lung disease models, immunopathology and local Th2 and ILC2 accumulation is reduced in DR3-deficient mice despite normal systemic priming of Th2 responses and generation of T cells secreting IL-13 and IL-4, prompting the question of whether TL1A promotes the development of other T cell subsets that secrete cytokines to drive allergic disease. In this study, we find that TL1A potently promotes generation of murine T cells producing IL-9 (Th9) by signaling through DR3 in a cell-intrinsic manner. TL1A enhances Th9 differentiation through an IL-2 and STAT5-dependent mechanism, unlike the TNF-family member OX40, which promotes Th9 through IL-4 and STAT6. Th9 differentiated in the presence of TL1A are more pathogenic, and endogenous TL1A signaling through DR3 on T cells is required for maximal pathology and IL-9 production in allergic lung inflammation. Taken together, these data identify TL1A-DR3 interactions as a novel pathway that promotes Th9 differentiation and pathogenicity. TL1A may be a potential therapeutic target in diseases dependent on IL-9.