ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hausman, Bryan S."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The master developmental regulator Jab1/Cops5/Csn5 is essential for proper bone growth and survival in mice
    (Elsevier, 2021-02) Samsa, William E.; Mamidi, Murali K.; Hausman, Bryan S.; Bashur, Lindsay A.; Greenfield, Edward M.; Zhou, Guang; Orthopaedic Surgery, School of Medicine
    Jab1, also known as Csn5/Cops5, is a key subunit of the COP9 Signalosome, a highly conserved macromolecular complex. We previously reported that the conditional knockout of Jab1 in mouse limb buds and chondrocytes results in severely shortened limbs and neonatal lethal chondrodysplasia, respectively. In this study, we further investigated the specific role of Jab1 in osteoblast differentiation and postnatal bone growth by characterizing a novel mouse model, the Osx-cre; Jab1flox/flox conditional knockout (Jab1 cKO) mouse, in which Jab1 is deleted in osteoblast precursor cells. Jab1 cKO mutant mice appeared normal at birth, but developed progressive dwarfism. Inevitably, all mutant mice died prior to weaning age. The histological and micro-computed tomography analysis of mutant long bones revealed severely altered bone microarchitecture, with a significant reduction in trabecular thickness. Moreover, Jab1 cKO mouse tibiae had a drastic decrease in mineralization near the epiphyseal growth plates, and Jab1 cKO mice also developed spontaneous fractures near the tibiofibular junction. Additionally, our cell culture studies demonstrated that Jab1 deletion in osteoblast precursors led to decreased mineralization and a reduced response to TGFβ and BMP signaling. Moreover, an unbiased reporter screen also identified decreased TGFβ activity in Jab1-knockdown osteoblasts. Thus, Jab1 is necessary for proper osteoblast differentiation and postnatal bone growth, likely in part through its positive regulation of the TGFβ and BMP signaling pathways in osteoblast progenitor cells.
  • Loading...
    Thumbnail Image
    Item
    Staphylococcus aureus and Acinetobacter baumannii Inhibit Osseointegration of Orthopedic Implants
    (American Society for Microbiology, 2022) Choe, Hyonmin; Tatro, Joscelyn M.; Hausman, Bryan S.; Hujer, Kristine M.; Marshall, Steve H.; Akkus, Ozan; Rather, Phillip N.; Lee, Zhenghong; Bonomo, Robert A.; Greenfield, Edward M.; Orthopaedic Surgery, School of Medicine
    Bacterial infections routinely cause inflammation and thereby impair osseointegration of orthopedic implants. Acinetobacter spp., which cause osteomyelitis following trauma, on or off the battlefield, were, however, reported to cause neither osteomyelitis nor osteolysis in rodents. We therefore compared the effects of Acinetobacter strain M2 to those of Staphylococcus aureus in a murine implant infection model. Sterile implants and implants with adherent bacteria were inserted in the femur of mice. Bacterial burden, levels of proinflammatory cytokines, and osseointegration were measured. All infections were localized to the implant site. Infection with either S. aureus or Acinetobacter strain M2 increased the levels of proinflammatory cytokines and the chemokine CCL2 in the surrounding femurs, inhibited bone formation around the implant, and caused loss of the surrounding cortical bone, leading to decreases in both histomorphometric and biomechanical measures of osseointegration. Genetic deletion of TLR2 and TLR4 from the mice partially reduced the effects of Acinetobacter strain M2 on osseointegration but did not alter the effects of S. aureus. This is the first report that Acinetobacter spp. impair osseointegration of orthopedic implants in mice, and the murine model developed for this study will be useful for future efforts to clarify the mechanism of implant failure due to Acinetobacter spp. and to assess novel diagnostic tools or therapeutic agents.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University