- Browse by Author
Browsing by Author "Hatch, Jennifer M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Authorship Trends Over the Past 30-Years in the Annals of Biomedical Engineering(Springer, 2019-05) Aguilar, Izath Nizeet; Ganesh, Venkateswaran; Mannfeld, Rachel; Gorden, Riley; Hatch, Jennifer M.; Lunsford, Shatoria; Whipple, Elizabeth C.; Loder, Randall T.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineIn academia, manuscripts serve as an important component of career development. The past several years have seen heightened evaluation of the role of the gender gap in career advancement, as well as other bibliometric changes in publications. We therefore analyzed authorship and publication trends in the Annals of Biomedical Engineering over the past three decades (one complete year of manuscripts for each decade; 1986, 1996, 2006, and 2016). The variables analyzed were number of authors per manuscript, numerical position of the corresponding author, number of collaborating institutions and countries, number of references, and number of citations per manuscript. The gender of both the first and corresponding authors was identified and analyzed over time and by region. Globally, the percentage of female first and corresponding authors significantly increased from 0% in 1986 to 28.6% (p = 0.003) and 20.4% (p = 0.0009), respectively, in 2016. Although there were significant differences regarding female first and corresponding author over time, they did not vary by region of origin (p = 0.5 and 0.2, respectively). Overall, these findings highlight the improvements made and the challenges that still exist related to publishing within the bioengineering field.Item Skeletal manifestations in a streptozotocin-induced C57BL/6 model of Type 1 diabetes(Elsevier, 2022-08-01) Hatch, Jennifer M.; Segvich, Dyann M.; Kohler, Rachel; Wallace, Joseph M.; Biomedical Engineering, School of Engineering and TechnologyDiabetes Mellitus is a metabolic disease which profoundly affects many organ systems in the body, including the skeleton. As is often the case with biology, there are inherent differences between the sexes when considering skeletal development and disease progression and outcome. Therefore, the aim of this study was to develop a protocol to reliably induce diabetes in both sexes of the C57BL/6 mouse utilizing streptozotocin (STZ) and to characterize the resulting bone phenotype. We hypothesized that destruction of the β-cells in the pancreatic islet by STZ would result in a diabetic state with downstream skeletal manifestations. Beginning at 8 weeks of age, mice were injected for 5 consecutive days with STZ (65 mg/kg males, 90 mg/kg females) dissolved in a citrate buffer. The diabetic state of the mice was monitored for 5 weeks to ensure persistent hyperglycemia and mice were euthanized at 15 weeks of age. Diabetes was confirmed through blood glucose monitoring, glucose and insulin tolerance testing, HbA1c measurement, and histological staining of the pancreas. The resulting bone phenotype was characterized using microcomputed tomography to assess bone structure, and whole bone mechanical testing to assess bone functional integrity. Mice from both sexes experienced loss of β-cell mass and increased glycation of hemoglobin, as well as reduced trabecular thickness and trabecular tissues mineral density (TMD), and reduced cortical thickness and cortical bone area fraction. In female mice the change area fraction was driven by a reduction in overall bone size while in male mice, the change was driven by increased marrow area. Males also experienced reduced cortical TMD. Mechanical bending tests of the tibiae showed significant results in females with a reduction in yield force and ultimate force driving lower work to yield and total work and a roughly 40 % reduction of stiffness. When tissue level parameters were estimated using beam theory, there was a significant reduction in yield and ultimate stresses as well as elastic modulus. The previously reported mechanistic similarity in the action of STZ on murine animals, as well as the ease of STZ administration via IP injection make this model is a strong candidate for future exploration of osteoporotic bone disease, Diabetes Mellitus, and the link between estrogen and glucose sensitivity.