- Browse by Author
Browsing by Author "Hashimoto, Daniel A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item EAES and SAGES 2018 consensus conference on acute diverticulitis management: evidence-based recommendations for clinical practice(Springer Nature, 2019-09) Francis, Nader K.; Sylla, Patricia; Abou-Khalil, Maria; Arolfo, Simone; Berler, David; Curtis, Nathan J.; Dolejs, Scott C.; Garfinkle, Richard; Gorter-Stam, Marguerite; Hashimoto, Daniel A.; Hassinger, Taryn E.; Molenaar, Charlotte J. L.; Pucher, Philip H.; Schuermans, Valérie; Arezzo, Alberto; Agresta, Ferdinando; Antoniou, Stavros A.; Arulampalam, Tan; Boutros, Marylise; Bouvy, Nicole; Campbell, Kenneth; Francone, Todd; Haggerty, Stephen P.; Hedrick, Traci L.; Stefanidis, Dimitrios; Truitt, Mike S.; Kelly, Jillian; Ket, Hans; Dunkin, Brian J.; Pietrabissa, Andrea; Surgery, School of MedicineBACKGROUND: Acute diverticulitis (AD) presents a unique diagnostic and therapeutic challenge for general surgeons. This collaborative project between EAES and SAGES aimed to summarize recent evidence and draw statements of recommendation to guide our members on comprehensive AD management. METHODS: Systematic reviews of the literature were conducted across six AD topics by an international steering group including experts from both societies. Topics encompassed the epidemiology, diagnosis, management of non-complicated and complicated AD as well as emergency and elective operative AD management. Consensus statements and recommendations were generated, and the quality of the evidence and recommendation strength rated with the GRADE system. Modified Delphi methodology was used to reach consensus among experts prior to surveying the EAES and SAGES membership on the recommendations and likelihood to impact their practice. Results were presented at both EAES and SAGES annual meetings with live re-voting carried out for recommendations with < 70% agreement. RESULTS: A total of 51 consensus statements and 41 recommendations across all six topics were agreed upon by the experts and submitted for members' online voting. Based on 1004 complete surveys and over 300 live votes at the SAGES and EAES Diverticulitis Consensus Conference (DCC), consensus was achieved for 97.6% (40/41) of recommendations with 92% (38/41) agreement on the likelihood that these recommendations would change practice if not already applied. Areas of persistent disagreement included the selective use of imaging to guide AD diagnosis, recommendations against antibiotics in non-complicated AD, and routine colonic evaluation after resolution of non-complicated diverticulitis. CONCLUSION: This joint EAES and SAGES consensus conference updates clinicians on the current evidence and provides a set of recommendations that can guide clinical AD management practice.Item Metrics reloaded: recommendations for image analysis validation(Springer Nature, 2024) Maier-Hein, Lena; Reinke, Annika; Godau, Patrick; Tizabi, Minu D.; Buettner, Florian; Christodoulou, Evangelia; Glocker, Ben; Isensee, Fabian; Kleesiek, Jens; Kozubek, Michal; Reyes, Mauricio; Riegler, Michael A.; Wiesenfarth, Manuel; Kavur, A. Emre; Sudre, Carole H.; Baumgartner, Michael; Eisenmann, Matthias; Heckmann-Nötzel, Doreen; Rädsch, Tim; Acion, Laura; Antonelli, Michela; Arbel, Tal; Bakas, Spyridon; Benis, Arriel; Blaschko, Matthew B.; Cardoso, M. Jorge; Cheplygina, Veronika; Cimini, Beth A.; Collins, Gary S.; Farahani, Keyvan; Ferrer, Luciana; Galdran, Adrian; van Ginneken, Bram; Haase, Robert; Hashimoto, Daniel A.; Hoffman, Michael M.; Huisman, Merel; Jannin, Pierre; Kahn, Charles E.; Kainmueller, Dagmar; Kainz, Bernhard; Karargyris, Alexandros; Karthikesalingam, Alan; Kofler, Florian; Kopp-Schneider, Annette; Kreshuk, Anna; Kurc, Tahsin; Landman, Bennett A.; Litjens, Geert; Madani, Amin; Maier-Hein, Klaus; Martel, Anne L.; Mattson, Peter; Meijering, Erik; Menze, Bjoern; Moons, Karel G. M.; Müller, Henning; Nichyporuk, Brennan; Nickel, Felix; Petersen, Jens; Rajpoot, Nasir; Rieke, Nicola; Saez-Rodriguez, Julio; Sánchez, Clara I.; Shetty, Shravya; van Smeden, Maarten; Summers, Ronald M.; Taha, Abdel A.; Tiulpin, Aleksei; Tsaftaris, Sotirios A.; Van Calster, Ben; Varoquaux, Gaël; Jäger, Paul F.; Pathology and Laboratory Medicine, School of MedicineIncreasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.Item Understanding metric-related pitfalls in image analysis validation(ArXiv, 2023-09-25) Reinke, Annika; Tizabi, Minu D.; Baumgartner, Michael; Eisenmann, Matthias; Heckmann-Nötzel, Doreen; Kavur, A. Emre; Rädsch, Tim; Sudre, Carole H.; Acion, Laura; Antonelli, Michela; Arbel, Tal; Bakas, Spyridon; Benis, Arriel; Blaschko, Matthew B.; Buettner, Florian; Cardoso, M. Jorge; Cheplygina, Veronika; Chen, Jianxu; Christodoulou, Evangelia; Cimini, Beth A.; Collins, Gary S.; Farahani, Keyvan; Ferrer, Luciana; Galdran, Adrian; Van Ginneken, Bram; Glocker, Ben; Godau, Patrick; Haase, Robert; Hashimoto, Daniel A.; Hoffman, Michael M.; Huisman, Merel; Isensee, Fabian; Jannin, Pierre; Kahn, Charles E.; Kainmueller, Dagmar; Kainz, Bernhard; Karargyris, Alexandros; Karthikesalingam, Alan; Kenngott, Hannes; Kleesiek, Jens; Kofler, Florian; Kooi, Thijs; Kopp-Schneider, Annette; Kozubek, Michal; Kreshuk, Anna; Kurc, Tahsin; Landman, Bennett A.; Litjens, Geert; Madani, Amin; Maier-Hein, Klaus; Martel, Anne L.; Mattson, Peter; Meijering, Erik; Menze, Bjoern; Moons, Karel G. M.; Müller, Henning; Nichyporuk, Brennan; Nickel, Felix; Petersen, Jens; Rafelski, Susanne M.; Rajpoot, Nasir; Reyes, Mauricio; Riegler, Michael A.; Rieke, Nicola; Saez-Rodriguez, Julio; Sánchez, Clara I.; Shetty, Shravya; Summers, Ronald M.; Taha, Abdel A.; Tiulpin, Aleksei; Tsaftaris, Sotirios A.; Van Calster, Ben; Varoquaux, Gaël; Yaniv, Ziv R.; Jäger, Paul F.; Maier-Hein, Lena; Pathology and Laboratory Medicine, School of MedicineValidation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.