- Browse by Author
Browsing by Author "Hart, Ronald P."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item 5. Collaborative Study on the Genetics of Alcoholism: Functional genomics(Wiley, 2023) Gameiro-Ros, Isabel; Popova, Dina; Prytkova, Iya; Pang, Zhiping P.; Liu, Yunlong; Dick, Danielle; Bucholz, Kathleen K.; Agrawal, Arpana; Porjesz, Bernice; Goate, Alison M.; Xuei, Xiaoling; Kamarajan, Chella; COGA Collaborators; Tischfield, Jay A.; Edenberg, Howard J.; Slesinger, Paul A.; Hart, Ronald P.; Medical and Molecular Genetics, School of MedicineAlcohol Use Disorder is a complex genetic disorder, involving genetic, neural, and environmental factors, and their interactions. The Collaborative Study on the Genetics of Alcoholism (COGA) has been investigating these factors and identified putative alcohol use disorder risk genes through genome-wide association studies. In this review, we describe advances made by COGA in elucidating the functional changes induced by alcohol use disorder risk genes using multimodal approaches with human cell lines and brain tissue. These studies involve investigating gene regulation in lymphoblastoid cells from COGA participants and in post-mortem brain tissues. High throughput reporter assays are being used to identify single nucleotide polymorphisms in which alternate alleles differ in driving gene expression. Specific single nucleotide polymorphisms (both coding or noncoding) have been modeled using induced pluripotent stem cells derived from COGA participants to evaluate the effects of genetic variants on transcriptomics, neuronal excitability, synaptic physiology, and the response to ethanol in human neurons from individuals with and without alcohol use disorder. We provide a perspective on future studies, such as using polygenic risk scores and populations of induced pluripotent stem cell-derived neurons to identify signaling pathways related with responses to alcohol. Starting with genes or loci associated with alcohol use disorder, COGA has demonstrated that integration of multimodal data within COGA participants and functional studies can reveal mechanisms linking genomic variants with alcohol use disorder, and potential targets for future treatments.Item Alcohol reverses the effects of KCNJ6 (GIRK2) noncoding variants on excitability of human glutamatergic neurons(Springer Nature, 2023) Popova, Dina; Gameiro-Ros, Isabel; Youssef, Mark M.; Zalamea, Petronio; Morris, Ayeshia D.; Prytkova, Iya; Jadali, Azadeh; Kwan, Kelvin Y.; Kamarajan, Chella; Salvatore, Jessica E.; Xuei, Xiaoling; Chorlian, David B.; Porjesz, Bernice; Kuperman, Samuel; Dick, Danielle M.; Goate, Alison; Edenberg, Howard J.; Tischfield, Jay A.; Pang, Zhiping P.; Slesinger, Paul A.; Hart, Ronald P.; Medical and Molecular Genetics, School of MedicineSynonymous and noncoding single nucleotide polymorphisms (SNPs) in the KCNJ6 gene, encoding G protein-gated inwardly rectifying potassium channel subunit 2 (GIRK2), have been linked with increased electroencephalographic frontal theta event-related oscillations (ERO) in subjects diagnosed with alcohol use disorder (AUD). To identify molecular and cellular mechanisms while retaining the appropriate genetic background, we generated induced excitatory glutamatergic neurons (iN) from iPSCs derived from four AUD-diagnosed subjects with KCNJ6 variants ("Affected: AF") and four control subjects without variants ("Unaffected: UN"). Neurons were analyzed for changes in gene expression, morphology, excitability and physiological properties. Single-cell RNA sequencing suggests that KCNJ6 AF variant neurons have altered patterns of synaptic transmission and cell projection morphogenesis. Results confirm that AF neurons express lower levels of GIRK2, have greater neurite area, and elevated excitability. Interestingly, exposure to intoxicating concentrations of ethanol induces GIRK2 expression and reverses functional effects in AF neurons. Ectopic overexpression of GIRK2 alone mimics the effect of ethanol to normalize induced excitability. We conclude that KCNJ6 variants decrease GIRK2 expression and increase excitability and that this effect can be minimized or reduced with ethanol.Item Genome-wide admixture mapping of DSM-IV alcohol dependence, criterion count, and the self-rating of the effects of ethanol in African American populations(Wiley, 2021-04) Lai, Dongbing; Kapoor, Manav; Wetherill, Leah; Schwandt, Melanie; Ramchandani, Vijay A.; Goldman, David; Chao, Michael; Almasy, Laura; Bucholz, Kathleen; Hart, Ronald P.; Kamarajan, Chella; Meyers, Jacquelyn L.; Nurnberger, John I., Jr.; Tischfield, Jay; Edenberg, Howard J.; Schuckit, Marc; Goate, Alison; Scott, Denise M.; Porjesz, Bernice; Agrawal, Arpana; Foroud, Tatiana; Medical and Molecular Genetics, School of MedicineAfrican Americans (AA) have lower prevalence of alcohol dependence and higher subjective response to alcohol than European Americans. Genome-wide association studies (GWAS) have identified genes/variants associated with alcohol dependence specifically in AA; however, the sample sizes are still not large enough to detect variants with small effects. Admixture mapping is an alternative way to identify alcohol dependence genes/variants that may be unique to AA. In this study, we performed the first admixture mapping of DSM-IV alcohol dependence diagnosis, DSM-IV alcohol dependence criterion count, and two scores from the self-rating of effects of ethanol (SRE) as measures of response to alcohol: the first five times of using alcohol (SRE-5) and average of SRE across three times (SRE-T). Findings revealed a region on chromosome 4 that was genome-wide significant for SRE-5 (p value = 4.18E-05). Fine mapping did not identify a single causal variant to be associated with SRE-5; instead, conditional analysis concluded that multiple variants collectively explained the admixture mapping signal. PPARGC1A, a gene that has been linked to alcohol consumption in previous studies, is located in this region. Our finding suggests that admixture mapping is a useful tool to identify genes/variants that may have been missed by current GWAS approaches in admixed populations.Item Integrated Single-Cell Multiomic Profiling of Caudate Nucleus Suggests Key Mechanisms in Alcohol Use Disorder(bioRxiv, 2024-08-06) Green, Nick; Gao, Hongyu; Chu, Xiaona; Yuan, Quiyue; McGuire, Patrick; Lai, Dongbing; Jiang, Guanglong; Xuei, Xiaoling; Reiter, Jill; Stevens, Julia; Sutherland, Greg; Goate, Alison; Pang, Zhiping; Slesinger, Paul; Hart, Ronald P.; Tischfield, Jay A.; Agrawal, Arpana; Wang, Yue; Duren, Zhana; Edenberg, Howard J.; Liu, Yunlong; Medical and Molecular Genetics, School of MedicineAlcohol use disorder (AUD) is likely associated with complex transcriptional alterations in addiction-relevant brain regions. We characterize AUD-associated differences in cell type-specific gene expression and chromatin accessibility in the caudate nucleus by conducting a single-nucleus RNA-seq assay and a single-nucleus RNA-seq + ATAC-seq (multiome) assay on caudate tissue from 143 human postmortem brains (74 with AUD). We identified 17 cell types. AUD was associated with a higher proportion of microglia in an activated state and more astrocytes in a reactive state. There was widespread evidence for differentially expressed genes across cell types with the most identified in oligodendrocytes and astrocytes, including genes involved in immune response and synaptic regulation, many of which appeared to be regulated in part by JUND and OLIG2. Microglia-astrocyte communication via interleukin-1 beta, and microglia-astrocyte-oligodendrocyte interaction via transforming growth factor beta 1 were increased in individuals with AUD. Expression quantitative trait loci analysis revealed potential driver genes of AUD, including ADAL, that may protect against AUD in medium spiny neurons and interneurons. This work provides a thorough profile of the effects of AUD in the human brain and identifies several promising genes for further study.Item The Collaborative Study on the Genetics of Alcoholism: Overview(Wiley, 2023) Agrawal, Arpana; Brislin, Sarah J.; Bucholz, Kathleen K.; Dick, Danielle; Hart, Ronald P.; Johnson, Emma C.; Meyers, Jacquelyn; Salvatore, Jessica; Slesinger, Paul; COGA Collaborators; Almasy, Laura; Foroud, Tatiana; Goate, Alison; Hesselbrock, Victor; Kramer, John; Kuperman, Samuel; Merikangas, Alison K.; Nurnberger, John I.; Tischfield, Jay; Edenberg, Howard J.; Porjesz, Bernice; Medical and Molecular Genetics, School of MedicineAlcohol use disorders (AUD) are commonly occurring, heritable and polygenic disorders with etiological origins in the brain and the environment. To outline the causes and consequences of alcohol-related milestones, including AUD, and their related psychiatric comorbidities, the Collaborative Study on the Genetics of Alcoholism (COGA) was launched in 1989 with a gene-brain-behavior framework. COGA is a family based, diverse (~25% self-identified African American, ~52% female) sample, including data on 17,878 individuals, ages 7-97 years, in 2246 families of which a proportion are densely affected for AUD. All participants responded to questionnaires (e.g., personality) and the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA) which gathers information on psychiatric diagnoses, conditions and related behaviors (e.g., parental monitoring). In addition, 9871 individuals have brain function data from electroencephalogram (EEG) recordings while 12,009 individuals have been genotyped on genome-wide association study (GWAS) arrays. A series of functional genomics studies examine the specific cellular and molecular mechanisms underlying AUD. This overview provides the framework for the development of COGA as a scientific resource in the past three decades, with individual reviews providing in-depth descriptions of data on and discoveries from behavioral and clinical, brain function, genetic and functional genomics data. The value of COGA also resides in its data sharing policies, its efforts to communicate scientific findings to the broader community via a project website and its potential to nurture early career investigators and to generate independent research that has broadened the impact of gene-brain-behavior research into AUD.Item Upregulated GIRK2 Counteracts Ethanol-Induced Changes in Excitability and Respiration in Human Neurons(Society for Neuroscience, 2024-04-17) Prytkova, Iya; Liu, Yiyuan; Fernando, Michael; Gameiro-Ros, Isabel; Popova, Dina; Kamarajan, Chella; Xuei, Xiaoling; Chorlian, David B.; Edenberg, Howard J.; Tischfield, Jay A.; Porjesz, Bernice; Pang, Zhiping P.; Hart, Ronald P.; Goate, Alison; Slesinger, Paul A.; Medical and Molecular Genetics, School of MedicineGenome-wide association studies (GWAS) of electroencephalographic endophenotypes for alcohol use disorder (AUD) has identified noncoding polymorphisms within the KCNJ6 gene. KCNJ6 encodes GIRK2, a subunit of a G-protein-coupled inwardly rectifying potassium channel that regulates neuronal excitability. We studied the effect of upregulating KCNJ6 using an isogenic approach with human glutamatergic neurons derived from induced pluripotent stem cells (male and female donors). Using multielectrode arrays, population calcium imaging, single-cell patch-clamp electrophysiology, and mitochondrial stress tests, we find that elevated GIRK2 acts in concert with 7–21 d of ethanol exposure to inhibit neuronal activity, to counteract ethanol-induced increases in glutamate response, and to promote an increase intrinsic excitability. Furthermore, elevated GIRK2 prevented ethanol-induced changes in basal and activity-dependent mitochondrial respiration. These data support a role for GIRK2 in mitigating the effects of ethanol and a previously unknown connection to mitochondrial function in human glutamatergic neurons.