ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Harris, Alexander"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    COVID-19 and Bone Loss: A Review of Risk Factors, Mechanisms, and Future Directions
    (Springer, 2024) Creecy, Amy; Awosanya, Olatundun D.; Harris, Alexander; Qiao, Xian; Ozanne, Marie; Toepp, Angela J.; Kacena, Melissa A.; McCune, Thomas; Orthopaedic Surgery, School of Medicine
    Purpose of review: SARS-CoV-2 drove the catastrophic global phenomenon of the COVID-19 pandemic resulting in a multitude of systemic health issues, including bone loss. The purpose of this review is to summarize recent findings related to bone loss and potential mechanisms. Recent findings: The early clinical evidence indicates an increase in vertebral fractures, hypocalcemia, vitamin D deficiencies, and a loss in BMD among COVID-19 patients. Additionally, lower BMD is associated with more severe SARS-CoV-2 infection. Preclinical models have shown bone loss and increased osteoclastogenesis. The bone loss associated with SARS-CoV-2 infection could be the result of many factors that directly affect the bone such as higher inflammation, activation of the NLRP3 inflammasome, recruitment of Th17 cells, the hypoxic environment, and changes in RANKL/OPG signaling. Additionally, SARS-CoV-2 infection can exert indirect effects on the skeleton, as mechanical unloading may occur with severe disease (e.g., bed rest) or with BMI loss and muscle wasting that has also been shown to occur with SARS-CoV-2 infection. Muscle wasting can also cause systemic issues that may influence the bone. Medications used to treat SARS-CoV-2 infection also have a negative effect on the bone. Lastly, SARS-CoV-2 infection may also worsen conditions such as diabetes and negatively affect kidney function, all of which could contribute to bone loss and increased fracture risk. SARS-CoV-2 can negatively affect the bone through multiple direct and indirect mechanisms. Future work will be needed to determine what patient populations are at risk of COVID-19-related increases in fracture risk, the mechanisms behind bone loss, and therapeutic options. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
  • Loading...
    Thumbnail Image
    Item
    SARS-CoV-2 and its Multifaceted Impact on Bone Health: Mechanisms and Clinical Evidence
    (Springer, 2024) Harris, Alexander; Creecy, Amy; Awosanya, Olatundun D.; McCune, Thomas; Ozanne, Marie V.; Toepp, Angela J.; Kacena, Melissa A.; Qiao, Xian; Orthopaedic Surgery, School of Medicine
    Purpose of review: SARS-CoV-2 infection, the culprit of the COVID-19 pandemic, has been associated with significant long-term effects on various organ systems, including bone health. This review explores the current understanding of the impacts of SARS-CoV-2 infection on bone health and its potential long-term consequences. Recent findings: As part of the post-acute sequelae of SARS-CoV-2 infection, bone health changes are affected by COVID-19 both directly and indirectly, with multiple potential mechanisms and risk factors involved. In vitro and preclinical studies suggest that SARS-CoV-2 may directly infect bone marrow cells, leading to alterations in bone structure and osteoclast numbers. The virus can also trigger a robust inflammatory response, often referred to as a "cytokine storm", which can stimulate osteoclast activity and contribute to bone loss. Clinical evidence suggests that SARS-CoV-2 may lead to hypocalcemia, altered bone turnover markers, and a high prevalence of vertebral fractures. Furthermore, disease severity has been correlated with a decrease in bone mineral density. Indirect effects of SARS-CoV-2 on bone health, mediated through muscle weakness, mechanical unloading, nutritional deficiencies, and corticosteroid use, also contribute to the long-term consequences. The interplay of concurrent conditions such as diabetes, obesity, and kidney dysfunction with SARS-CoV-2 infection further complicates the disease's impact on bone health. SARS-CoV-2 infection directly and indirectly affects bone health, leading to potential long-term consequences. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
  • Loading...
    Thumbnail Image
    Item
    The Utility of AI in Writing a Scientific Review Article on the Impacts of COVID-19 on Musculoskeletal Health
    (Springer, 2024) Awosanya, Olatundun D.; Harris, Alexander; Creecy, Amy; Qiao, Xian; Toepp, Angela J.; McCune, Thomas; Kacena, Melissa A.; Ozanne, Marie V.; Orthopaedic Surgery, School of Medicine
    Purpose of review: There were two primary purposes to our reviews. First, to provide an update to the scientific community about the impacts of COVID-19 on musculoskeletal health. Second, was to determine the value of using a large language model, ChatGPT 4.0, in the process of writing a scientific review article. To accomplish these objectives, we originally set out to write three review articles on the topic using different methods to produce the initial drafts of the review articles. The first review article was written in the traditional manner by humans, the second was to be written exclusively using ChatGPT (AI-only or AIO), and the third approach was to input the outline and references selected by humans from approach 1 into ChatGPT, using the AI to assist in completing the writing (AI-assisted or AIA). All review articles were extensively fact-checked and edited by all co-authors leading to the final drafts of the manuscripts, which were significantly different from the initial drafts. Recent findings: Unfortunately, during this process, it became clear that approach 2 was not feasible for a very recent topic like COVID-19 as at the time, ChatGPT 4.0 had a cutoff date of September 2021 and all articles published after this date had to be provided to ChatGPT, making approaches 2 and 3 virtually identical. Therefore, only two approaches and two review articles were written (human and AI-assisted). Here we found that the human-only approach took less time to complete than the AI-assisted approach. This was largely due to the number of hours required to fact-check and edit the AI-assisted manuscript. Of note, the AI-assisted approach resulted in inaccurate attributions of references (about 20%) and had a higher similarity index suggesting an increased risk of plagiarism. The main aim of this project was to determine whether the use of AI could improve the process of writing a scientific review article. Based on our experience, with the current state of technology, it would not be advised to solely use AI to write a scientific review article, especially on a recent topic.
  • No Thumbnail Available
    Item
    Virtual Reality Implementation for Acute Care Occupational Therapy
    (2023-06-04) Harris, Alexander; Sego, Daniel; Department of Occupational Therapy, School of Health and Human Sciences; Weber, Heather
    Virtual Reality (VR) gaming is an effective tool for occupational therapists in an acute care setting to help patients reach their therapy goals. This capstone project focused on helping the occupational therapy staff at two acute care hospital settings begin implementation of VR into therapy sessions with their patients. This goal was accomplished through staff training and education on the therapeutic use of technology as well as implementation of the technology with patients during OT sessions. Staff education included 9 different training sessions with the staff and was measured using a staff survey at the beginning and end of the project. Impact of VR on patient's therapy session was measured through patient self-report of various factors including pain, anxiety, fatigue, and nausea pre and post session. Data was collected at the beginning and end of VR based OT sessions as well as typical OT treatment sessions for comparative data. The conclusion of this project found improvement on the staff's pre and post training survey results on the variables of perceived ability to use VR in therapy and perception of benefit of VR use. The VR implementation data analysis found that there was no statistical difference between the pre and post session results for any other variables measured between the typical OT and VR sessions, indicating that VR is equally effective as typical OT treatment regarding the variables measured.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University