- Browse by Author
Browsing by Author "Harris, A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item The Controversy of Myopia as a Risk Factor for Glaucoma: a Mathematical Approach(Office of the Vice Chancellor for Research, 2012-04-13) Guidoboni, G.; Cassani, S.; Carichino, L.; Arieli, Y.; Siesky, B.A.; Harris, A.Purpose: to quantify how individual variations in anatomical parameters often associated with myopia (e.g. longer ocular axial length (OAL), reduced scleral thickness (ST), lamina cribrosa diameter (LCD) and thickness (LCT)) affect retinal blood flow (RBF) and its sensitivity to ocular perfusion pressure (OPP). Methods: A mathematical model is used to calculate RBF through central retinal artery (CRA), arterioles, capillaries, venules, and central retinal vein (CRV). The flow is time-dependent, driven by systemic pressure and regulated by variable resistances to account for nonlinear effects due to (1) autoregulation (AR), and (2) lamina cribrosa effect on CRA and CRV. The latter is a nonlinear function of intraocular pressure (IOP), cerebrospinal fluid pressure (CSF) and OAL, ST, LCD, and LCT. RBF is computed as the solution of a system of five non-linear ordinary differential equations. The system is solved for different OPP values, obtained by varying independently IOP and mean arterial pressure (MAP), with and without AR. Results: Four representative eyes are compared: Eye 1 (OAL=24mm, ST=1mm, LCD=3mm, LCT=0.4mm), Eye 2 (OAL=28mm, ST=1mm, LCD=3mm, LCT=0.4mm), Eye 3 (OAL=24mm, ST=0.7mm, LCD=2mm, LCT=0.2mm), Eye 4 (OAL=28mm, ST=0.7mm, LCD=2mm, LCT=0.2mm). The model predicts that the cardiac cycle RBF average (RBFav) for eyes with smaller LCD and LCT is notably less than in normal eyes when IOP is elevated and without AR (c). Without AR and reduced MAP, the four eyes show similar RBFav reductions (d). With AR, anatomical changes do not induce notable changes in RBFav, (a) and (b). Conclusions: Reduced LCD and LCT, often associated with myopia, seem to affect RBFav more than elevated OAL. RBFav reductions magnify when AR is impaired, and this might reduce IOP safe levels for eyes with reduced LCD and LCT. These findings suggest that a combination of anatomical and vascular factors might cause certain myopic eyes to be at higher risk for glaucomatous damage than others.Item Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma(Nature Publishing Group, 2015-10) Siaudvytyte, L.; Januleviciene, I.; Daveckaite, A.; Ragauskas, A.; Bartusis, L.; Kucinoviene, J.; Siesky, B.; Harris, A.; Department of Ophthalmology, IU School of MedicineThere is increasing evidence in the literature regarding translaminar pressure difference's (TPD) role in the pathophysiology of glaucoma. The optic nerve is exposed not only to intraocular pressure in the eye, but also to intracranial pressure (ICP), as it is surrounded by cerebrospinal fluid in the subarachnoid space. Although pilot studies have identified the potential importance of TPD in glaucoma, limited available data currently prevent a comprehensive description of the role that TPD may have in glaucomatous pathophysiology. In this review, we present all available qualified data from a systematic review of the literature of the role of TPD in open-angle glaucoma (OAG). PubMed (Medline), OVID Medline, ScienceDirect, SpringerLink, and all available library databases were reviewed and subsequent meta-analysis of pooled mean differences are presented where appropriate. Five papers including 396 patients met criteria for inclusion to the analysis. Importantly, we included all observational studies despite differences in ICP measurement methods, as there is no consensus regarding best-practice ICP measurements in glaucoma. Our results show that not only TPD is higher in glaucoma patients compared with healthy subjects, it is related to structural glaucomatous changes of the optic disc. Our analysis suggests further longitudinal prospective studies are needed to investigate the influence of TPD in OAG, with a goal of overcoming methodological weaknesses of previous studies.Item Literature review and meta-analysis of translaminar pressure difference in openangle glaucoma(Nature, 2015-07) Siaudvytyte, L.; Januleviciene, I.; Daveckaite, A.; Ragauskas, A.; Bartusis, L.; Kucinoviene, J.; Siesky, Brent; Harris, A.; Department of Ophthalmology, IU School of MedicineThere is increasing evidence in the literature regarding translaminar pressure difference’s (TPD) role in the pathophysiology of glaucoma. The optic nerve is exposed not only to intraocular pressure in the eye, but also to intracranial pressure (ICP), as it is surrounded by cerebrospinal fluid in the subarachnoid space. Although pilot studies have identified the potential importance of TPD in glaucoma, limited available data currently prevent a comprehensive description of the role that TPD may have in glaucomatous pathophysiology. In this review, we present all available qualified data from a systematic review of the literature of the role of TPD in open-angle glaucoma (OAG). PubMed (Medline), OVID Medline, ScienceDirect, SpringerLink, and all available library databases were reviewed and subsequent meta-analysis of pooled mean differences are presented where appropriate. Five papers including 396 patients met criteria for inclusion to the analysis. Importantly, we included all observational studies despite differences in ICP measurement methods, as there is no consensus regarding best-practice ICP measurements in glaucoma. Our results show that not only TPD is higher in glaucoma patients compared with healthy subjects, it is related to structural glaucomatous changes of the optic disc. Our analysis suggests further longitudinal prospective studies are needed to investigate the influence of TPD in OAG, with a goal of overcoming methodological weaknesses of previous studies.Item Reply to: ‘TLP: a premature concept'(SpringerNature, 2016-01) Januleviciene, I.; Siaudvytyte, L.; Daveckaite, A.; Ragauskas, A.; Siesky, B.; Harris, A.; Department of Ophthalmology, IU School of Medicine