ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hao, Guanhua"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The Emergence of the Local Moment Molecular Spin Transistor
    (IOP, 2020-05) Hao, Guanhua; Cheng, Ruihua; Dowben, P. A.; Physics, School of Science
    Local moment molecular systems have now been used as the conduction channel in gated spintronics devices, and some of these three terminal devices might even be considered molecular spin transistors. In these systems, the gate voltage can be used to tune the molecular level alignment, while applied magnetic fields have an influence on the spin state, altering the magnetic properties, and providing insights to the magnetic anisotropy. More recently, the use of molecular spin crossover complexes, as the conduction channel, has led to devices that are both nonvolatile and have functionality at higher temperatures. Indeed, some devices have now been demonstrated to work at room temperature. Here, several molecular transistors, including those claiming to use single molecule magnets (SMM), are reviewed.
  • Loading...
    Thumbnail Image
    Item
    Magnetic Field Perturbations to a Soft X-ray-Activated Fe (II) Molecular Spin State Transition
    (MDPI, 2021-10) Hao, Guanhua; N’Diaye, Alpha T.; Ekanayaka, Thilini K.; Dale, Ashley S.; Jiang, Xuanyuan; Mishra, Esha; Mellinger, Corbyn; Yazdani, Saeed; Freeland, John W.; Zhang, Jian; Cheng, Ruihua; Xu, Xiaoshan; Dowben, Peter A.; Physics, School of Science
    The X-ray-induced spin crossover transition of an Fe (II) molecular thin film in the presence and absence of a magnetic field has been investigated. The thermal activation energy barrier in the soft X-ray activation of the spin crossover transition for [Fe{H2B(pz)2}2(bipy)] molecular thin films is reduced in the presence of an applied magnetic field, as measured through X-ray absorption spectroscopy at various temperatures. The influence of a 1.8 T magnetic field is sufficient to cause deviations from the expected exponential spin state transition behavior which is measured in the field free case. We find that orbital moment diminishes with increasing temperature, relative to the spin moment in the vicinity of room temperature.
  • Loading...
    Thumbnail Image
    Item
    Nonvolatile Voltage Controlled Molecular Spin-State Switching for Memory Applications
    (MDPI, 2021-03) Ekanayaka, Thilini K.; Hao, Guanhua; Mosey, Aaron; Dale, Ashley S.; Jiang, Xuanyuan; Yost, Andrew J.; Sapkota, Keshab R.; Wang, George T.; Zhang, Jian; N’Diaye, Alpha T.; Marshall, Andrew; Cheng, Ruihua; Naeemi, Azad; Xu, Xiaoshan; Dowben, Peter A.; Physics, School of Science
    Nonvolatile, molecular multiferroic devices have now been demonstrated, but it is worth giving some consideration to the issue of whether such devices could be a competitive alternative for solid-state nonvolatile memory. For the Fe (II) spin crossover complex [Fe{H2B(pz)2}2(bipy)], where pz = tris(pyrazol-1-yl)-borohydride and bipy = 2,2′-bipyridine, voltage-controlled isothermal changes in the electronic structure and spin state have been demonstrated and are accompanied by changes in conductance. Higher conductance is seen with [Fe{H2B(pz)2}2(bipy)] in the high spin state, while lower conductance occurs for the low spin state. Plausibly, there is the potential here for low-cost molecular solid-state memory because the essential molecular thin films are easily fabricated. However, successful device fabrication does not mean a device that has a practical value. Here, we discuss the progress and challenges yet facing the fabrication of molecular multiferroic devices, which could be considered competitive to silicon.
  • Loading...
    Thumbnail Image
    Item
    Probing the unpaired Fe spins across the spin crossover of a coordination polymer
    (RSC, 2021) Ekanayaka, Thilini K.; Kurz, Hannah; Dale, Ashley S.; Hao, Guanhua; Mosey, Aaron; Mishra, Esha; N'Diaye, Alpha T.; Cheng, Ruihua; Weber, Birgit; Dowben, Peter A.; Physics, School of Science
    For the spin crossover coordination polymer [Fe(L1)(bipy)]n (where L1 is a N2O22− coordinating Schiff base-like ligand bearing a phenazine fluorophore and bipy = 4,4′-bipyridine), there is compelling additional evidence of a spin state transition. Both Fe 2p X-ray absorption and X-ray core level photoemission spectroscopies confirm that a spin crossover takes place, as observed by magnetometry. Yet the details of the temperature dependent changes of the spin state inferred from both X-ray absorption and X-ray core level photoemission, differ from magnetometry, particularly with regard to the apparent critical transition temperatures and the cooperative nature of the curve progression in general. Comparing the experimental spin crossover data to Ising model simulations, a transition activation energy in the region of 160 to 175 meV is indicated, along with a nonzero exchange J. Overall, the implication is that there may be perturbations to the bistability of spin states, that are measurement dependent or that the surface differs from the bulk with regard to the cooperative effects observed upon spin transition.
  • Loading...
    Thumbnail Image
    Item
    Quantitative Study of the Energy Changes in Voltage-Controlled Spin Crossover Molecular Thin Films
    (ACS, 2020-09) Mosey, Aaron; Dale, Ashley S.; Hao, Guanhua; N'Diaye, Alpha; Dowben, Peter A.; Cheng, Ruihua; Physics, School of Science
    Voltage-controlled nonvolatile isothermal spin state switching of a [Fe{H2B(pz)2}2(bipy)] (pz = tris(pyrazol-1–1y)-borohydride, bipy = 2,2′-bipyridine) film, more than 40 to 50 molecular layers thick, is possible when it is adsorbed onto a molecular ferroelectric substrate. Accompanying this high-spin and low-spin state switching, at room temperature, we observe a remarkable change in conductance, thereby allowing not only nonvolatile voltage control of the spin state (“write”) but also current sensing of the molecular spin state (“read”). Monte Carlo Ising model simulations of the high-spin state occupancy, extracted from X-ray absorption spectroscopy, indicate that the energy difference between the low-spin and high-spin state is modified by 110 meV. Transport measurements demonstrate that four terminal voltage-controlled devices can be realized using this system.
  • Loading...
    Thumbnail Image
    Item
    Tunable spin-state bistability in a spin crossover molecular complex
    (IOP, 2019) Jiang, Xuanyuan; Hao, Guanhua; Wang, Xiao; Mosey, Aaron; Zhang, Xin; Yu, Le; Yost, Andrew J.; Zhang, Xin; DiChiara, Anthony D.; N'Diaye, Alpha T.; Cheng, Xuemei; Zhang, Jian; Cheng, Ruihua; Xu, Xiaoshan; Dowben, Peter A.; Physics, School of Sciences
    The spin crossover (SCO) transitions at both the surface and over the entire volume of the [Fe{H2B(pz)2}2(bipy)] polycrystalline films on Al2O3 substrates have been studied, where pz  =  pyrazol-1-yl and bipy  =  2,2'-bipyridine. For [Fe{H2B(pz)2}2(bipy)] films of hundreds of nm thick, magnetometry and x-ray absorption spectroscopy measurements show thermal hysteresis in the SCO transition with temperature, although the transition in bulk [Fe{H2B(pz)2}2(bipy)] occurs in a non-hysteretic fashion at 157 K. While the size of the crystallites in those films are similar, the hysteresis becomes more prominent in thinner films, indicating a significant effect of the [Fe{H2B(pz)2}2(bipy)]/Al2O3 interface. Bistability of spin states, which can be inferred from the thermal hysteresis, was directly observed using temperature-dependent x-ray diffraction; the crystallites behave as spin-state domains that coexist during the transition. The difference between the spin state of molecules at the surface of the [Fe{H2B(pz)2}2(bipy)] films and that of the molecules within the films, during the thermal cycle, indicates that both cooperative (intermolecular) effects and coordination are implicated in perturbations to the SCO transition.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University