- Browse by Author
Browsing by Author "Han, Lei"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item FOXP3 exon 2 controls Treg stability and autoimmunity(American Association for the Advancement of Science, 2022) Du, Jianguang; Wang, Qun; Yang, Shuangshuang; Chen, Si; Fu, Yongyao; Spath, Sabine; Domeier, Phillip; Hagin, David; Anover-Sombke, Stephanie; Haouili, Maya; Liu, Sheng; Wan, Jun; Han, Lei; Liu, Juli; Yang, Lei; Sangani, Neel; Li, Yujing; Lu, Xiongbin; Janga, Sarath Chandra; Kaplan, Mark H.; Torgerson, Troy R.; Ziegler, Steven F.; Zhou, Baohua; Pediatrics, School of MedicineDiffering from the mouse Foxp3 gene that encodes only one protein product, human FOXP3 encodes two major isoforms through alternative splicing-a longer isoform (FOXP3 FL) containing all the coding exons and a shorter isoform lacking the amino acids encoded by exon 2 (FOXP3 ΔE2). The two isoforms are naturally expressed in humans, yet their differences in controlling regulatory T cell phenotype and functionality remain unclear. In this study, we show that patients expressing only the shorter isoform fail to maintain self-tolerance and develop immunodeficiency, polyendocrinopathy, and enteropathy X-linked (IPEX) syndrome. Mice with Foxp3 exon 2 deletion have excessive follicular helper T (TFH) and germinal center B (GC B) cell responses, and develop systemic autoimmune disease with anti-dsDNA and antinuclear autoantibody production, as well as immune complex glomerulonephritis. Despite having normal suppressive function in in vitro assays, regulatory T cells expressing FOXP3 ΔE2 are unstable and sufficient to induce autoimmunity when transferred into Tcrb-deficient mice. Mechanistically, the FOXP3 ΔE2 isoform allows increased expression of selected cytokines, but decreased expression of a set of positive regulators of Foxp3 without altered binding to these gene loci. These findings uncover indispensable functions of the FOXP3 exon 2 region, highlighting a role in regulating a transcriptional program that maintains Treg stability and immune homeostasis.Item Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes(Cell Press, 2022) Liu, Juli; Zhang, Yucheng; Han, Lei; Guo, Shuai; Wu, Shiyong; Doud, Emma Helen; Wang, Cheng; Chen, Hanying; Rubart-von der Lohe, Michael; Wan, Jun; Yang, Lei; Pediatrics, School of MedicinePatients with coronavirus disease 2019 (COVID-19) commonly have manifestations of heart disease. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome encodes 27 proteins. Currently, SARS-CoV-2 gene-induced abnormalities of human heart muscle cells remain elusive. Here, we comprehensively characterized the detrimental effects of a SARS-CoV-2 gene, Orf9c, on human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) by preforming multi-omic analyses. Transcriptomic analyses of hPSC-CMs infected by SARS-CoV-2 with Orf9c overexpression (Orf9cOE) identified concordantly up-regulated genes enriched into stress-related apoptosis and inflammation signaling pathways, and down-regulated CM functional genes. Proteomic analysis revealed enhanced expressions of apoptotic factors, whereas reduced protein factors for ATP synthesis by Orf9cOE. Orf9cOE significantly reduced cellular ATP level, induced apoptosis, and caused electrical dysfunctions of hPSC-CMs. Finally, drugs approved by the U.S. Food and Drug Administration, namely, ivermectin and meclizine, restored ATP levels and ameliorated CM death and functional abnormalities of Orf9cOE hPSC-CMs. Overall, we defined the molecular mechanisms underlying the detrimental impacts of Orf9c on hPSC-CMs and explored potentially therapeutic approaches to ameliorate Orf9c-induced cardiac injury and abnormalities.Item Genome-wide studies reveal the essential and opposite roles of ARID1A in controlling human cardiogenesis and neurogenesis from pluripotent stem cells(BMC, 2020-07-09) Liu, Juli; Liu, Sheng; Gao, Hongyu; Han, Lei; Chu, Xiaona; Sheng, Yi; Shou, Weinian; Wang, Yue; Liu, Yunlong; Wan, Jun; Yang, Lei; BioHealth Informatics, School of Informatics and ComputingBackground Early human heart and brain development simultaneously occur during embryogenesis. Notably, in human newborns, congenital heart defects strongly associate with neurodevelopmental abnormalities, suggesting a common gene or complex underlying both cardiogenesis and neurogenesis. However, due to lack of in vivo studies, the molecular mechanisms that govern both early human heart and brain development remain elusive. Results Here, we report ARID1A, a DNA-binding subunit of the SWI/SNF epigenetic complex, controls both neurogenesis and cardiogenesis from human embryonic stem cells (hESCs) through distinct mechanisms. Knockout-of-ARID1A (ARID1A−/−) leads to spontaneous differentiation of neural cells together with globally enhanced expression of neurogenic genes in undifferentiated hESCs. Additionally, when compared with WT hESCs, cardiac differentiation from ARID1A −/− hESCs is prominently suppressed, whereas neural differentiation is significantly promoted. Whole genome-wide scRNA-seq, ATAC-seq, and ChIP-seq analyses reveal that ARID1A is required to open chromatin accessibility on promoters of essential cardiogenic genes, and temporally associated with key cardiogenic transcriptional factors T and MEF2C during early cardiac development. However, during early neural development, transcription of most essential neurogenic genes is dependent on ARID1A, which can interact with a known neural restrictive silencer factor REST/NRSF. Conclusions We uncover the opposite roles by ARID1A to govern both early cardiac and neural development from pluripotent stem cells. Global chromatin accessibility on cardiogenic genes is dependent on ARID1A, whereas transcriptional activity of neurogenic genes is under control by ARID1A, possibly through ARID1A-REST/NRSF interaction.Item Lipid droplet-associated lncRNA LIPTER preserves cardiac lipid metabolism(Springer Nature, 2023) Han, Lei; Huang, Dayang; Wu, Shiyong; Liu, Sheng; Wang, Cheng; Sheng, Yi; Lu, Xiongbin; Broxmeyer, Hal E.; Wan, Jun; Yang, Lei; Pediatrics, School of MedicineLipid droplets (LDs) are cellular organelles critical for lipid homeostasis, with intramyocyte LD accumulation implicated in metabolic disorder-associated heart diseases. Here we identify a human long non-coding RNA, Lipid-Droplet Transporter (LIPTER), essential for LD transport in human cardiomyocytes. LIPTER binds phosphatidic acid and phosphatidylinositol 4-phosphate on LD surface membranes and the MYH10 protein, connecting LDs to the MYH10-ACTIN cytoskeleton and facilitating LD transport. LIPTER and MYH10 deficiencies impair LD trafficking, mitochondrial function and survival of human induced pluripotent stem cell-derived cardiomyocytes. Conditional Myh10 deletion in mouse cardiomyocytes leads to LD accumulation, reduced fatty acid oxidation and compromised cardiac function. We identify NKX2.5 as the primary regulator of cardiomyocyte-specific LIPTER transcription. Notably, LIPTER transgenic expression mitigates cardiac lipotoxicity, preserves cardiac function and alleviates cardiomyopathies in high-fat-diet-fed and Leprdb/db mice. Our findings unveil a molecular connector role of LIPTER in intramyocyte LD transport, crucial for lipid metabolism of the human heart, and hold significant clinical implications for treating metabolic syndrome-associated heart diseases.Item LncRNA HBL1 is required for genome-wide PRC2 occupancy and function in cardiogenesis from human pluripotent stem cells(The Company of Biologists, 2021-07) Liu, Juli; Liu, Sheng; Han, Lei; Sheng, Yi; Zhang, Yucheng; Kim, Il-Man; Wan, Jun; Yang, Lei; Pediatrics, School of MedicinePolycomb repressive complex 2 (PRC2) deposits H3K27me3 on chromatin to silence transcription. PRC2 broadly interacts with RNAs. Currently, the role of the RNA-PRC2 interaction in human cardiogenesis remains elusive. Here, we found that human-specific heart brake lncRNA 1 (HBL1) interacted with two PRC2 subunits, JARID2 and EED, in human pluripotent stem cells (hPSCs). Loss of JARID2, EED or HBL1 significantly enhanced cardiac differentiation from hPSCs. HBL1 depletion disrupted genome-wide PRC2 occupancy and H3K27me3 chromatin modification on essential cardiogenic genes, and broadly enhanced cardiogenic gene transcription in undifferentiated hPSCs and later-on differentiation. In addition, ChIP-seq revealed reduced EED occupancy on 62 overlapped cardiogenic genes in HBL1−/− and JARID2−/− hPSCs, indicating that the epigenetic state of cardiogenic genes was determined by HBL1 and JARID2 at pluripotency stage. Furthermore, after cardiac development occurs, the cytosolic and nuclear fractions of HBL1 could crosstalk via a conserved ‘microRNA-1-JARID2’ axis to modulate cardiogenic gene transcription. Overall, our findings delineate the indispensable role of HBL1 in guiding PRC2 function during early human cardiogenesis, and expand the mechanistic scope of lncRNA(s) that cytosolic and nuclear portions of HBL1 could coordinate to orchestrate human cardiogenesis.Item Mouse pulmonary interstitial macrophages mediate the pro-tumorigenic effects of IL-9(Springer Nature, 2022-07-01) Fu, Yongyao; Pajulas, Abigail; Wang, Jocelyn; Zhou, Baohua; Cannon, Anthony; Cheung, Cherry Cheuk Lam; Zhang, Jilu; Zhou, Huaxin; Fisher, Amanda Jo; Omstead, David T.; Khan, Sabrina; Han, Lei; Renauld, Jean-Christophe; Paczesny, Sophie; Gao, Hongyu; Liu, Yunlong; Yang, Lei; Tighe, Robert M.; Licona-Limón, Paula; Flavell, Richard A.; Takatsuka, Shogo; Kitamura, Daisuke; Sun, Jie; Bilgicer, Basar; Sears, Catherine R.; Yang, Kai; Kaplan, Mark H.; Microbiology and Immunology, School of MedicineAlthough IL-9 has potent anti-tumor activity in adoptive cell transfer therapy, some models suggest that it can promote tumor growth. Here, we show that IL-9 signaling is associated with poor outcomes in patients with various forms of lung cancer, and is required for lung tumor growth in multiple mouse models. CD4+ T cell-derived IL-9 promotes the expansion of both CD11c+ and CD11c- interstitial macrophage populations in lung tumor models. Mechanistically, the IL-9/macrophage axis requires arginase 1 (Arg1) to mediate tumor growth. Indeed, adoptive transfer of Arg1+ but not Arg1- lung macrophages to Il9r-/- mice promotes tumor growth. Moreover, targeting IL-9 signaling using macrophage-specific nanoparticles restricts lung tumor growth in mice. Lastly, elevated expression of IL-9R and Arg1 in tumor lesions is associated with poor prognosis in lung cancer patients. Thus, our study suggests the IL-9/macrophage/Arg1 axis is a potential therapeutic target for lung cancer therapy.Item Multidimensional Mechanistic Spectrum of Long Non-coding RNAs in Heart Development and Disease(Frontiers Media, 2021-09-16) Han, Lei; Yang, Lei; Pediatrics, School of MedicineWith the large-scale genome-wide sequencing, long non-coding RNAs (lncRNAs) have been found to compose of a large portion of the human transcriptome. Recent studies demonstrated the multidimensional functions of lncRNAs in heart development and disease. The subcellular localization of lncRNA is considered as a key factor that determines lncRNA function. Cytosolic lncRNAs mainly regulate mRNA stability, mRNA translation, miRNA processing and function, whereas nuclear lncRNAs epigenetically regulate chromatin remodeling, structure, and gene transcription. In this review, we summarize the molecular mechanisms of cytosolic and nuclear lncRNAs in heart development and disease separately, and emphasize the recent progress to dictate the crosstalk of cytosolic and nuclear lncRNAs in orchestrating the same biological process. Given the low evolutionary conservation of most lncRNAs, deeper understanding of human lncRNA will uncover a new layer of human regulatory mechanism underlying heart development and disease, and benefit the future clinical treatment for human heart disease.