- Browse by Author
Browsing by Author "Han, Renzhi"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Antiretroviral Therapy Normalizes Autoantibody Profile of HIV Patients by Decreasing CD33⁺CD11b⁺HLA-DR⁺ Cells: A Cross-Sectional Study(Ovid Technologies (Wolters Kluwer) - Lippincott Williams & Wilkins, 2016-04) Meng, Zhefeng; Du, Ling; Hu, Ningjie; Byrd, Daniel; Amet, Tohti; Desai, Mona; Shepherd, Nicole; Lan, Jie; Han, Renzhi; Yu, Qigui; Department of Microbiology & Immunology, IU School of MedicineAutoimmune manifestations are common in human immunodeficiency virus (HIV) patients. However, the autoantibody spectrum associated with HIV infection and the impact of antiretroviral therapy (ART) remains to be determined. The plasma autoantibody spectrum for HIV patients was characterized by protein microarrays containing 83 autoantigens and confirmed by enzyme-linked immunosorbent assay (ELISA). Regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) were analyzed by flow cytometry and their effects on autoantibodies production were determined by B cell ELISpot. Higher levels of autoantibody and higher prevalence of elevated autoantibodies were observed in ART-naive HIV patients compared to healthy subjects and HIV patients on ART. The highest frequency of CD33(+)CD11b(+)HLA-DR(+) cells was observed in ART-naive HIV patients and was associated with the quantity of elevated autoantibodies. In addition, CD33(+)CD11b(+)HLA-DR(+) cells other than Tregs or MDSCs boost the B cell response in a dose-dependent manner by in vitro assay. In summary, HIV infection leads to elevation of autoantibodies while ART suppresses the autoimmune manifestation by decreasing CD33(+)CD11b(+)HLA-DR(+) cells in vivo.The roles of CD33(+)CD11b(+)HLA-DR(+) cells on disease progression in HIV patients needs further assessment.Item Base editing in humanized dystrophic mice(Elsevier, 2024-04-12) Zhang, Chen; Zhou, Yuan; Han, Renzhi; Pediatrics, School of MedicineItem Cardiomyopathy in Duchenne Muscular Dystrophy and the Potential for Mitochondrial Therapeutics to Improve Treatment Response(MDPI, 2024-07-09) Gandhi, Shivam; Sweeney, H. Lee; Hart, Cora C.; Han, Renzhi; Perry, Christopher G. R.; Pediatrics, School of MedicineDuchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations to the dystrophin gene, resulting in deficiency of dystrophin protein, loss of myofiber integrity in skeletal and cardiac muscle, and eventual cell death and replacement with fibrotic tissue. Pathologic cardiac manifestations occur in nearly every DMD patient, with the development of cardiomyopathy—the leading cause of death—inevitable by adulthood. As early cardiac abnormalities are difficult to detect, timely diagnosis and appropriate treatment modalities remain a challenge. There is no cure for DMD; treatment is aimed at delaying disease progression and alleviating symptoms. A comprehensive understanding of the pathophysiological mechanisms is crucial to the development of targeted treatments. While established hypotheses of underlying mechanisms include sarcolemmal weakening, upregulation of pro-inflammatory cytokines, and perturbed ion homeostasis, mitochondrial dysfunction is thought to be a potential key contributor. Several experimental compounds targeting the skeletal muscle pathology of DMD are in development, but the effects of such agents on cardiac function remain unclear. The synergistic integration of small molecule- and gene-target-based drugs with metabolic-, immune-, or ion balance-enhancing compounds into a combinatorial therapy offers potential for treating dystrophin deficiency-induced cardiomyopathy, making it crucial to understand the underlying mechanisms driving the disorder.Item Defective BVES-mediated feedback control of cAMP in muscular dystrophy(Springer Nature, 2023-03-30) Li, Haiwen; Wang, Peipei; Zhang, Chen; Zuo, Yuanbojiao; Zhou, Yuan; Han, Renzhi; Pediatrics, School of MedicineBiological processes incorporate feedback mechanisms to enable positive and/or negative regulation. cAMP is an important second messenger involved in many aspects of muscle biology. However, the feedback mechanisms for the cAMP signaling control in skeletal muscle are largely unknown. Here we show that blood vessel epicardial substance (BVES) is a negative regulator of adenylyl cyclase 9 (ADCY9)-mediated cAMP signaling involved in maintaining muscle mass and function. BVES deletion in mice reduces muscle mass and impairs muscle performance, whereas virally delivered BVES expressed in Bves-deficient skeletal muscle reverses these defects. BVES interacts with and negatively regulates ADCY9’s activity. Disruption of BVES-mediated control of cAMP signaling leads to an increased protein kinase A (PKA) signaling cascade, thereby promoting FoxO-mediated ubiquitin proteasome degradation and autophagy initiation. Our study reveals that BVES functions as a negative feedback regulator of ADCY9-cAMP signaling in skeletal muscle, playing an important role in maintaining muscle homeostasis.Item Liver-specific in vivo base editing of Angptl3 via AAV delivery efficiently lowers blood lipid levels in mice(BMC, 2023-06-15) Zuo, Yuanbojiao; Zhang, Chen; Zhou, Yuan; Li, Haiwen; Xiao, Weidong; Herzog, Roland W.; Xu, Jie; Zhang, Jifeng; Chen, Y. Eugene; Han, Renzhi; Pediatrics, School of MedicineBackground: Gene editing has emerged as an exciting therapeutic development platform for numerous genetic and nongenetic diseases. Targeting lipid-modulating genes such as angiopoietin-related protein 3 (ANGPTL3) with gene editing offers hope for a permanent solution to lower cardiovascular disease risks associated with hypercholesterolemia. Results: In this study, we developed a hepatocyte-specific base editing therapeutic approach delivered by dual adeno-associated virus (AAV) to enable hepatocyte-specific targeting of Angptl3 to lower blood lipid levels. Systemic AAV9-mediated delivery of AncBE4max, a cytosine base editor (CBE), targeting mouse Angptl3 resulted in the installation of a premature stop codon in Angptl3 with an average efficiency of 63.3 ± 2.3% in the bulk liver tissue. A near-complete knockout of the ANGPTL3 protein in the circulation were observed within 2-4 weeks following AAV administration. Furthermore, the serum levels of triglyceride (TG) and total cholesterol (TC) were decreased by approximately 58% and 61%, respectively, at 4 weeks after treatment. Conclusions: These results highlight the promise of liver-targeted Angptl3 base editing for blood lipid control.Item Systemic delivery of full-length dystrophin in Duchenne muscular dystrophy mice(Springer Nature, 2024-07-21) Zhou, Yuan; Zhang, Chen; Xiao, Weidong; Herzog, Roland W.; Han, Renzhi; Pediatrics, School of MedicineCurrent gene therapy for Duchenne muscular dystrophy (DMD) utilizes adeno-associated virus (AAV) to deliver micro-dystrophin (µDys), which does not provide full protection for striated muscles as it lacks many important functional domains of full-length (FL) dystrophin. Here we develop a triple vector system to deliver FL-dystrophin into skeletal and cardiac muscles. We split FL-dystrophin into three fragments linked to two orthogonal pairs of split intein, allowing efficient assembly of FL-dystrophin. The three fragments packaged in myotropic AAV (MyoAAV4A) restore FL-dystrophin expression in both skeletal and cardiac muscles in male mdx4cv mice. Dystrophin-glycoprotein complex components are also restored at the sarcolemma of dystrophic muscles. MyoAAV4A-delivered FL-dystrophin significantly improves muscle histopathology, contractility, and overall strength comparable to µDys, but unlike µDys, it also restores defective cavin 4 localization and associated signaling in mdx4cv heart. Therefore, our data support the feasibility of a mutation-independent FL-dystrophin gene therapy for DMD, warranting further clinical development.Item Targeting miR-25 to alleviate DMD-related muscle dysfunction(Elsevier, 2024-06-17) Li, Shuang; Han, Renzhi; Pediatrics, School of Medicine