- Browse by Author
Browsing by Author "Hamid-Adiamoh, Majidah"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Maximizing the Potential of Attractive Targeted Sugar Baits (ATSBs) for Integrated Vector Management(MDPI, 2023-06-28) Njoroge, Teresia Muthoni; Hamid-Adiamoh, Majidah; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineDue to the limitations of the human therapeutics and vaccines available to treat and prevent mosquito-borne diseases, the primary strategy for disease mitigation is through vector control. However, the current tools and approaches used for mosquito control have proven insufficient to prevent malaria and arboviral infections, such as dengue, Zika, and lymphatic filariasis, and hence, these diseases remain a global public health threat. The proven ability of mosquito vectors to adapt to various control strategies through insecticide resistance, invasive potential, and behavioral changes from indoor to outdoor biting, combined with human failures to comply with vector control requirements, challenge sustained malaria and arboviral disease control worldwide. To address these concerns, increased efforts to explore more varied and integrated control strategies have emerged. These include approaches that involve the behavioral management of vectors. Attractive targeted sugar baits (ATSBs) are a vector control approach that manipulates and exploits mosquito sugar-feeding behavior to deploy insecticides. Although traditional approaches have been effective in controlling malaria vectors indoors, preventing mosquito bites outdoors and around human dwellings is challenging. ATSBs, which can be used to curb outdoor biting mosquitoes, have the potential to reduce mosquito densities and clinical malaria incidence when used in conjunction with existing vector control strategies. This review examines the available literature regarding the utility of ATSBs for mosquito control, providing an overview of ATSB active ingredients (toxicants), attractants, modes of deployment, target organisms, and the potential for integrating ATSBs with existing vector control interventions.Item Targeting Mosquitoes through Generation of an Insecticidal RNAi Yeast Strain Using Cas-CLOVER and Super PiggyBac Engineering in Saccharomyces cerevisiae(MDPI, 2023-10-27) Brizzee, Corey; Mysore, Keshava; Njoroge, Teresia M.; McConnell, Seth; Hamid-Adiamoh, Majidah; Stewart, Akilah T. M.; Kinder, J. Tyler; Crawford, Jack; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineThe global deployment of RNAi yeast insecticides involves transitioning from the use of laboratory yeast strains to more robust strains that are suitable for scaled fermentation. In this investigation, the RNA-guided Cas-CLOVER system was used in combination with Piggybac transposase to produce robust Saccharomyces cerevisiae strains with multiple integrated copies of the Sh.463 short hairpin RNA (shRNA) insecticide expression cassette. This enabled the constitutive high-level expression of an insecticidal shRNA corresponding to a target sequence that is conserved in mosquito Shaker genes, but which is not found in non-target organisms. Top-expressing Cas-CLOVER strains performed well in insecticide trials conducted on Aedes, Culex, and Anopheles larvae and adult mosquitoes, which died following consumption of the yeast. Scaled fermentation facilitated the kilogram-scale production of the yeast, which was subsequently heat-killed and dried. These studies indicate that RNAi yeast insecticide production can be scaled, an advancement that may one day facilitate the global distribution of this new mosquito control intervention.