- Browse by Author
Browsing by Author "Hameed, Bilal"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Defining the serum proteomic signature of hepatic steatosis, inflammation, ballooning and fibrosis in non-alcoholic fatty liver disease(Elsevier, 2023) Sanyal, Arun J.; Williams, Stephen A.; Lavine, Joel E.; Neuschwander-Tetri, Brent A.; Alexander, Leigh; Ostroff, Rachel; Biegel, Hannah; Kowdley, Kris V.; Chalasani, Naga; Dasarathy, Srinivasan; Diehl, Anna Mae; Loomba, Rohit; Hameed, Bilal; Behling, Cynthia; Kleiner, David E.; Karpen, Saul J.; Williams, Jessica; Jia, Yi; Yates, Katherine P.; Tonascia, James; Medicine, School of MedicineBackground & aims: Despite recent progress, non-invasive tests for the diagnostic assessment and monitoring of non-alcoholic fatty liver disease (NAFLD) remain an unmet need. Herein, we aimed to identify diagnostic signatures of the key histological features of NAFLD. Methods: Using modified-aptamer proteomics, we assayed 5,220 proteins in each of 2,852 single serum samples from 636 individuals with histologically confirmed NAFLD. We developed and validated dichotomized protein-phenotype models to identify clinically relevant severities of steatosis (grade 0 vs. 1-3), hepatocellular ballooning (0 vs. 1 or 2), lobular inflammation (0-1 vs. 2-3) and fibrosis (stages 0-1 vs. 2-4). Results: The AUCs of the four protein models, based on 37 analytes (18 not previously linked to NAFLD), for the diagnosis of their respective components (at a clinically relevant severity) in training/paired validation sets were: fibrosis (AUC 0.92/0.85); steatosis (AUC 0.95/0.79), inflammation (AUC 0.83/0.72), and ballooning (AUC 0.87/0.83). An additional outcome, at-risk NASH, defined as steatohepatitis with NAFLD activity score ≥4 (with a score of at least 1 for each of its components) and fibrosis stage ≥2, was predicted by multiplying the outputs of each individual component model (AUC 0.93/0.85). We further evaluated their ability to detect change in histology following treatment with placebo, pioglitazone, vitamin E or obeticholic acid. Component model scores significantly improved in the active therapies vs. placebo, and differential effects of vitamin E, pioglitazone, and obeticholic acid were identified. Conclusions: Serum protein scanning identified signatures corresponding to the key components of liver biopsy in NAFLD. The models developed were sufficiently sensitive to characterize the longitudinal change for three different drug interventions. These data support continued validation of these proteomic models to enable a "liquid biopsy"-based assessment of NAFLD.Item Histologic Findings of Advanced Fibrosis and Cirrhosis in Patients With Nonalcoholic Fatty Liver Disease Who Have Normal Aminotransferase Levels(Wolters Kluwer, 2019-10-01) Gawrieh, Samer; Wilson, Laura A.; Cummings, Oscar W.; Clark, Jeanne M.; Loomba, Rohit; Hameed, Bilal; Abdelmalek, Manal F.; Dasarathy, Srinivasan; Neuschwander-Tetri, Brent A.; Kowdley, Kris; Kleiner, David; Doo, Edward; Tonascia, James; Sanyal, Arun; Chalasani, Naga; Network and the NASH Clinical Research; Medicine, School of MedicineBackground and aims: Patients with nonalcoholic fatty liver disease (NAFLD) and normal aminotransferase levels may have advanced liver histology. We conducted a study to characterize the prevalence of and factors associated with advanced liver histology in patients with histologically characterized NAFLD and normal aminotransferase levels. Methods: We evaluated 534 adults with biopsy-proven NAFLD and ALT and AST < 40 U/L within 3 months of their liver biopsy. Histological phenotypes of primary interest were NASH with stage 2-3 fibrosis (NASH F2-3) and cirrhosis. Using multiple logistic regression models with Akaike’s Information Criteria (AIC), we identified variables associated with these histological phenotypes. We developed and internally validated their clinical prediction models. Results: The prevalence of NASH F2-F3 and cirrhosis were 19% and 7%, respectively. The best multiple regression AIC model for NASH F2-3 consisted of type 2 diabetes, White race, lower LDL, lower platelet count, higher AST/ALT ratio, higher serum triglycerides, and hypertension. The best AIC model for cirrhosis consisted of lower platelet count, lower AST/ALT ratio, higher BMI, and female sex. The area under the receiver operator curves of the prediction models were 0.70 (95% CI: 0.65-0.76) for detecting NASH-F2-3 and 0.85 (95% CI: 0.77-0.92) for detecting cirrhosis. When models were fixed at maximum Youden’s index, their positive and negative predictive values were 35% and 88% for NASH F2-F3 and 30% and 98% for cirrhosis, respectively. Conclusion: Clinically significant histological phenotypes are observed in patients with NAFLD and normal aminotransferase levels. Our models can assist the clinicians in excluding advanced liver histology in NAFLD patients with normal aminotransferase levels.Item Prospective Study of Outcomes in Adults with Nonalcoholic Fatty Liver Disease(Massachusetts Medical Society, 2021) Sanyal, Arun J.; Van Natta, Mark L.; Clark, Jeanne; Neuschwander-Tetri, Brent A.; Diehl, AnnaMae; Dasarathy, Srinivasan; Loomba, Rohit; Chalasani, Naga; Kowdley, Kris; Hameed, Bilal; Wilson, Laura A.; Yates, Katherine P.; Belt, Patricia; Lazo, Mariana; Kleiner, David E.; Behling, Cynthia; Tonascia, James; NASH Clinical Research Network (CRN); Medicine, School of MedicineBackground: The prognoses with respect to mortality and hepatic and nonhepatic outcomes across the histologic spectrum of nonalcoholic fatty liver disease (NAFLD) are not well defined. Methods: We prospectively followed a multicenter patient population that included the full histologic spectrum of NAFLD. The incidences of death and other outcomes were compared across baseline histologic characteristics. Results: A total of 1773 adults with NAFLD were followed for a median of 4 years. All-cause mortality increased with increasing fibrosis stages (0.32 deaths per 100 person-years for stage F0 to F2 [no, mild, or moderate fibrosis], 0.89 deaths per 100 persons-years for stage F3 [bridging fibrosis], and 1.76 deaths per 100 person-years for stage F4 [cirrhosis]). The incidence of liver-related complications per 100 person-years increased with fibrosis stage (F0 to F2 vs. F3 vs. F4) as follows: variceal hemorrhage (0.00 vs. 0.06 vs. 0.70), ascites (0.04 vs. 0.52 vs. 1.20), encephalopathy (0.02 vs. 0.75 vs. 2.39), and hepatocellular cancer (0.04 vs. 0.34 vs. 0.14). As compared with patients with stage F0 to F2 fibrosis, patients with stage F4 fibrosis also had a higher incidence of type 2 diabetes (7.53 vs. 4.45 events per 100 person-years) and a decrease of more than 40% in the estimated glomerular filtration rate (2.98 vs. 0.97 events per 100 person-years). The incidence of cardiac events and nonhepatic cancers were similar across fibrosis stages. After adjustment for age, sex, race, diabetes status, and baseline histologic severity, the incidence of any hepatic decompensation event (variceal hemorrhage, ascites, or encephalopathy) was associated with increased all-cause mortality (adjusted hazard ratio, 6.8; 95% confidence interval, 2.2 to 21.3). Conclusions: In this prospective study involving patients with NAFLD, fibrosis stages F3 and F4 were associated with increased risks of liver-related complications and death.