- Browse by Author
Browsing by Author "Halloran, Brian A."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Premature infants born <28 weeks with acute kidney injury have increased bronchopulmonary dysplasia rates(Springer Nature, 2023) Starr, Michelle C.; Schmicker, Robert H.; Halloran, Brian A.; Heagerty, Patrick; Brophy, Patrick; Goldstein, Stuart L.; Juul, Sandra E.; Hingorani, Sangeeta; Askenazi, David J.; PENUT Trial Consortium; Pediatrics, School of MedicineBackground: Despite a growing understanding of bronchopulmonary dysplasia (BPD) and advances in management, BPD rates remain stable. There is mounting evidence that BPD may be due to a systemic insult, such as acute kidney injury (AKI). Our hypothesis was that severe AKI would be associated with BPD. Methods: We conducted a secondary analysis of premature infants [24-27 weeks gestation] in the Recombinant Erythropoietin for Protection of Infant Renal Disease cohort (N = 885). We evaluated the composite outcome of Grade 2/3 BPD or death using generalized estimating equations. In an exploratory analysis, urinary biomarkers of angiogenesis (ANG1, ANG2, EPO, PIGF, TIE2, FGF, and VEGFA/D) were analyzed. Results: 594 (67.1%) of infants had the primary composite outcome of Grade 2/3 BPD or death. Infants with AKI (aOR: 1.69, 95% CI: 1.16-2.46) and severe AKI (aOR: 2.05, 95% CI: 1.19-3.54). had increased risk of the composite outcome after multivariable adjustment Among 106 infants with urinary biomarkers assessed, three biomarkers (VEGFA, VEGFD, and TIE2) had AUC > 0.60 to predict BPD. Conclusions: Infants with AKI had a higher likelihood of developing BPD/death, with the strongest relationship seen in those with more severe AKI. Three urinary biomarkers of angiogenesis may have potential to predict BPD development. Impact: AKI is associated with lung disease in extremely premature infants, and urinary biomarkers may predict this relationship. Infants with AKI and severe AKI have higher odds of BPD or death. Three urinary angiogenesis biomarkers are altered in infants that develop BPD. These findings have the potential to drive future work to better understand the mechanistic pathways of BPD, setting the framework for future interventions to decrease BPD rates. A better understanding of the mechanisms of BPD development and the role of AKI would have clinical care, cost, and quality of life implications given the long-term effects of BPD.