- Browse by Author
Browsing by Author "Hall, Stephen D."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item CYP2B6 pharmacogenetics-based in vitro-in vivo extrapolation of efavirenz clearance by physiologically based pharmacokinetic modeling(ASPET, 2013-12) Xu, Cong; Quinney, Sara K.; Guo, Yingyying; Hall, Stephen D.; Li, Lang; Desta, Zeruesenay; Medicine, School of MedicineEfavirenz is mainly cleared by CYP2B6. The CYP2B6*6 allele is associated with lower efavirenz clearance. Efavirenz clearance was predictable using in vitro data for carriers of the CYP2B6*1/*1 genotype, but the prediction in carriers of the CYP2B6*6 allele was poor. To test the hypothesis that incorporation of mechanism of reduced efavirenz metabolism by the CYP2B6*6 allele can predict the genetic effect on efavirenz pharmacokinetics, in vitro-in vivo extrapolation of efavirenz clearance was performed by physiologically based pharmacokinetic modeling (Simcyp Simulator; Simcyp Ltd., Sheffield, UK) using data obtained from expressed CYP2B6.1 and CYP2B6.6 as well as human liver microsomes (HLMs) with CYP2B6*1/*1, *1/*6, and *6/*6 genotypes. Simulated pharmacokinetics of a single 600-mg oral dose of efavirenz for individuals with each genotype was compared with data observed in healthy subjects genotyped for the CYP2B6*6 allele (n = 20). Efavirenz clearance for carriers of the CYP2B6*1/*1 genotype was predicted reasonably well using HLM data, but the clearance in carriers of the CYP2B6*6 allele was underpredicted using both expressed and HLM systems. Improved prediction of efavirenz clearance was obtained from expressed CYP2B6 after recalculating intersystem extrapolation factors for CYP2B6.1 and CYP2B6.6 based on in vitro intrinsic clearance of bupropion 4-hydroxylation. These findings suggest that genetic effect on both CYP2B6 protein expression and catalytic efficiency needs to be taken into account for the prediction of pharmacokinetics in individuals carrying the CYP2B6*6/*6 genotype. Expressed CYP2B6 proteins may be a reliable in vitro system to predict effect of the CYP2B6*6 allele on the metabolism of CYP2B6 substrates.Item Integration of In Vitro Binding Mechanism Into the Semiphysiologically Based Pharmacokinetic Interaction Model Between Ketoconazole and Midazolam(Wiley, 2013-09-11) Quinney, Sara K.; Knopp, Shawn; Chang, Chien; Hall, Stephen D.; Li, Lang; Obstetrics and Gynecology, School of MedicineIn vitro screening for drug-drug interactions is an integral component of drug development, with larger emphasis now placed on the use of in vitro parameters to predict clinical inhibition. However, large variability exists in Ki reported for ketoconazole with midazolam, a model inhibitor-substrate pair for CYP3A. We reviewed the literature and extracted Ki for ketoconazole as measured by the inhibition of hydroxymidazolam formation in human liver microsomes. The superset of data collected was analyzed for the impact of microsomal binding, using Langmuir and phase equilibrium binding models, and fitted to various inhibition models: competitive, noncompetitive, and mixed. A mixed inhibition model with binding corrected by an independent binding model was best able to fit the data (Kic = 19.2 nmol/l and Kin = 39.8 nmol/l) and to predict clinical effect of ketoconazole on midazolam area under the concentration-time curve. The variability of reported Ki may partially be explained by microsomal binding and choice of inhibition model.Item Quantitative Prediction of CYP3A4‐ and CYP3A5‐Mediated Drug Interactions(Wiley, 2019) Guo, Yingying; Lucksiri, Aroonrut; Dickinson, Gemma L.; Vuppalanchi, Raj K.; Hilligoss, Janna K.; Hall, Stephen D.; Medicine, School of MedicineWe verified a physiologically‐based pharmacokinetic (PBPK) model to predict cytochrome P450 3A4/5‐mediated drug‐drug interactions (DDIs). A midazolam (MDZ)–ketoconazole (KTZ) interaction study in 24 subjects selected by CYP3A5 genotype, and liquid chromatography and mass spectroscopy quantification of CYP3A4/5 abundance from independently acquired and genotyped human liver (n = 136) and small intestinal (N = 12) samples, were conducted. The observed CYP3A5 genetic effect on MDZ systemic and oral clearance was successfully replicated by a mechanistic framework incorporating the proteomics‐informed CYP3A abundance and optimized small intestinal CYP3A4 abundance based on MDZ intestinal availability (FG) of 0.44. Furthermore, combined with a modified KTZ PBPK model, this framework recapitulated the observed geometric mean ratio of MDZ area under the curve (AUCR) following 200 or 400 mg KTZ, which was, respectively, 2.7–3.4 and 3.9–4.7‐fold in intravenous administration and 11.4–13.4 and 17.0–19.7‐fold in oral administration, with AUCR numerically lower (P > 0.05) in CYP3A5 expressers than nonexpressers. In conclusion, the developed mechanistic framework supports dynamic prediction of CYP3A‐mediated DDIs in study planning by bridging DDIs between CYP3A5 expressers and nonexpressers.