- Browse by Author
Browsing by Author "Hackney, Daryl J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Insulinotropic Effects of Neprilysin and/or Angiotensin Receptor Inhibition in Mice(Frontiers Media, 2022-06-06) Esser, Nathalie; Schmidt, Christine; Barrow, Breanne M.; Cronic, Laura; Hackney, Daryl J.; Mongovin, Stephen M.; Hogan, Meghan F.; Templin, Andrew T.; Castillo, Joseph J.; Hull, Rebecca L.; Zraika, Sakeneh; Medicine, School of MedicineTreatment of heart failure with the angiotensin receptor-neprilysin inhibitor sacubitril/valsartan improved glycemic control in individuals with type 2 diabetes. The relative contribution of neprilysin inhibition versus angiotensin II receptor antagonism to this glycemic benefit remains unknown. Thus, we sought to determine the relative effects of the neprilysin inhibitor sacubitril versus the angiotensin II receptor blocker valsartan on beta-cell function and glucose homeostasis in a mouse model of reduced first-phase insulin secretion, and whether any beneficial effects are additive/synergistic when combined in sacubitril/valsartan. High fat-fed C57BL/6J mice treated with low-dose streptozotocin (or vehicle) were followed for eight weeks on high fat diet alone or supplemented with sacubitril, valsartan or sacubitril/valsartan. Body weight and fed glucose levels were assessed weekly. At the end of the treatment period, insulin release in response to intravenous glucose, insulin sensitivity, and beta-cell mass were determined. Sacubitril and valsartan, but not sacubitril/valsartan, lowered fasting and fed glucose levels and increased insulin release in diabetic mice. None of the drugs altered insulin sensitivity or beta-cell mass, but all reduced body weight gain. Effects of the drugs on insulin release were reproduced in angiotensin II-treated islets from lean C57BL/6J mice, suggesting the insulin response to each of the drugs is due to a direct effect on islets and mechanisms therein. In summary, sacubitril and valsartan each exert beneficial insulinotropic, glycemic and weight-reducing effects in obese and/or diabetic mice when administered alone; however, when combined, mechanisms within the islet contribute to their inability to enhance insulin release.Item Islet amyloid polypeptide aggregation exerts cytotoxic and proinflammatory effects on the islet vasculature in mice(Springer, 2022) Castillo, Joseph J.; Aplin, Alfred C.; Hackney, Daryl J.; Hogan, Meghan F.; Esser, Nathalie; Templin, Andrew T.; Akter, Rehana; Kahn, Steven E.; Raleigh, Daniel P.; Zraika, Sakeneh; Hull, Rebecca L.; Medicine, School of MedicineAims/hypothesis: The islet vasculature, including its constituent islet endothelial cells, is a key contributor to the microenvironment necessary for normal beta cell health and function. In type 2 diabetes, islet amyloid polypeptide (IAPP) aggregates, forming amyloid deposits that accumulate between beta cells and islet capillaries. This process is known to be toxic to beta cells but its impact on the islet vasculature has not previously been studied. Here, we report the first characterisation of the effects of IAPP aggregation on islet endothelial cells/capillaries using cell-based and animal models. Methods: Primary and immortalised islet endothelial cells were treated with amyloidogenic human IAPP (hIAPP) alone or in the presence of the amyloid blocker Congo Red or the Toll-like receptor (TLR) 2/4 antagonist OxPAPc. Cell viability was determined0 along with mRNA and protein levels of inflammatory markers. Islet capillary abundance, morphology and pericyte coverage were determined in pancreases from transgenic mice with beta cell expression of hIAPP using conventional and confocal microscopy. Results: Aggregated hIAPP decreased endothelial cell viability in immortalised and primary islet endothelial cells (by 78% and 60%, respectively) and significantly increased expression of inflammatory markers Il6, Vcam1 and Edn1 mRNA relative to vehicle treatment in both cell types (p<0.05; n=4). Both cytotoxicity and the proinflammatory response were ameliorated by Congo Red (p<0.05; n=4); whereas TLR2/4-inhibition blocked inflammatory gene expression (p<0.05; n=6) without improving viability. Islets from high-fat-diet-fed amyloid-laden hIAPP transgenic mice also exhibited significantly increased expression of most markers of endothelial inflammation (p<0.05; n=5) along with decreased capillary density compared with non-transgenic littermates fed the same diet (p<0.01). Moreover, a 16% increase in capillary diameter was observed in amyloid-adjacent capillaries (p<0.01), accompanied by a doubling in pericyte structures positive for neuron-glial antigen 2 (p<0.001). Conclusions/interpretation: Islet endothelial cells are susceptible to hIAPP-induced cytotoxicity and exhibit a TLR2/4-dependent proinflammatory response to aggregated hIAPP. Additionally, we observed amyloid-selective effects that decreased islet capillary density, accompanied by increased capillary diameter and increased pericyte number. Together, these data demonstrate that the islet vasculature is a target of the cytotoxic and proinflammatory effects of aggregated hIAPP that likely contribute to the detrimental effects of hIAPP aggregation on beta cell function and survival in type 2 diabetes.