- Browse by Author
Browsing by Author "Gutmann, David H."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Cabozantinib for neurofibromatosis type 1-related plexiform neurofibromas: a phase 2 trial(Springer Nature, 2021-01) Fisher, Michael J.; Shih, Chie-Schin; Rhodes, Steven D.; Armstrong, Amy E.; Wolters, Pamela L.; Dombi, Eva; Zhang, Chi; Angus, Steven P.; Johnson, Gary L.; Packer, Roger J.; Allen, Jeffrey C.; Ullrich, Nicole J.; Goldman, Stewart; Gutmann, David H.; Plotkin, Scott R.; Rosser, Tena; Robertson, Kent A.; Widemann, Brigitte C.; Smith, Abbi E.; Bessler, Waylan K.; He, Yongzheng; Park, Su-Jung; Mund, Julie A.; Jiang, Li; Bijangi-Vishehsaraei, Khadijeh; Robinson, Coretta Thomas; Cutter, Gary R.; Korf, Bruce R.; Blakeley, Jaishri O.; Clapp, D. Wade; Pediatrics, School of MedicineNeurofibromatosis type 1 (NF1) plexiform neurofibromas (PNs) are progressive, multicellular neoplasms that cause morbidity and may transform to sarcoma. Treatment of Nf1fl/fl;Postn-Cre mice with cabozantinib, an inhibitor of multiple tyrosine kinases, caused a reduction in PN size and number and differential modulation of kinases in cell lineages that drive PN growth. Based on these findings, the Neurofibromatosis Clinical Trials Consortium conducted a phase II, open-label, nonrandomized Simon two-stage study to assess the safety, efficacy and biologic activity of cabozantinib in patients ≥16 years of age with NF1 and progressive or symptomatic, inoperable PN ( NCT02101736 ). The trial met its primary outcome, defined as ≥25% of patients achieving a partial response (PR, defined as ≥20% reduction in target lesion volume as assessed by magnetic resonance imaging (MRI)) after 12 cycles of therapy. Secondary outcomes included adverse events (AEs), patient-reported outcomes (PROs) assessing pain and quality of life (QOL), pharmacokinetics (PK) and the levels of circulating endothelial cells and cytokines. Eight of 19 evaluable (42%) trial participants achieved a PR. The median change in tumor volume was 15.2% (range, +2.2% to -36.9%), and no patients had disease progression while on treatment. Nine patients required dose reduction or discontinuation of therapy due to AEs; common AEs included gastrointestinal toxicity, hypothyroidism, fatigue and palmar plantar erythrodysesthesia. A total of 11 grade 3 AEs occurred in eight patients. Patients with PR had a significant reduction in tumor pain intensity and pain interference in daily life but no change in global QOL scores. These data indicate that cabozantinib is active in NF1-associated PN, resulting in tumor volume reduction and pain improvement.Item The path forward: 2015 International Children's Tumor Foundation conference on neurofibromatosis type 1, type 2, and schwannomatosis(Wiley, 2017-06) Blakely, Jaishri O.; Bakker, Annette; Barker, Anne; Clapp, Wade; Ferner, Rosalie; Fisher, Michael J.; Giovannini, Marco; Gutmann, David H.; Karajannis, Matthias A.; Kissil, Joseph L.; Legius, Eric; Lloyd, Alison C.; Packer, Roger J.; Ramesh, Vijaya; Riccardi, Vincent M.; Stevenson, David A.; Ullrich, Nicole J.; Upadhyaya, Meena; Stemmer-Rachamimov, Anat; Pediatrics, School of MedicineThe Annual Children's Tumor Foundation International Neurofibromatosis Meeting is the premier venue for connecting discovery, translational and clinical scientists who are focused on neurofibromatosis types 1 and 2 (NF1 and NF2) and schwannomatosis (SWN). The meeting also features rare tumors such as glioma, meningioma, sarcoma, and neuroblastoma that occur both within these syndromes and spontaneously; associated with somatic mutations in NF1, NF2, and SWN. The meeting addresses both state of the field for current clinical care as well as emerging preclinical models fueling discovery of new therapeutic targets and discovery science initiatives investigating mechanisms of tumorigenesis. Importantly, this conference is a forum for presenting work in progress and bringing together all stakeholders in the scientific community. A highlight of the conference was the involvement of scientists from the pharmaceutical industry who presented growing efforts for rare disease therapeutic development in general and specifically, in pediatric patients with rare tumor syndromes. Another highlight was the focus on new investigators who presented new data about biomarker discovery, tumor pathogenesis, and diagnostic tools for NF1, NF2, and SWN. This report summarizes the themes of the meeting and a synthesis of the scientific discoveries presented at the conference in order to make the larger research community aware of progress in the neurofibromatoses.Item Spatially- and temporally-controlled postnatal p53 knockdown cooperates with embryonic Schwann cell precursor Nf1 gene loss to promote malignant peripheral nerve sheath tumor formation(Impact Journals, LLC, 2016-02-16) Hirbe, Angela C.; Dahiya, Sonika; Friedmann-Morvinski, Dinorah; Verma, Inder M.; Clapp, D. Wade; Gutmann, David H.; Department of Pediatrics, IU School of MedicineMalignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive sarcomas that arise sporadically or in association with the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome. In individuals with NF1, MPNSTs are hypothesized to arise from Nf1-deficient Schwann cell precursor cells following the somatic acquisition of secondary cooperating genetic mutations (e.g., p53 loss). To model this sequential genetic cooperativity, we coupled somatic lentivirus-mediated p53 knockdown in the adult right sciatic nerve with embryonic Schwann cell precursor Nf1 gene inactivation in two different Nf1 conditional knockout mouse strains. Using this approach, ~60% of mice with Periostin-Cre-mediated Nf1 gene inactivation (Periostin-Cre; Nf1(flox/flox) mice) developed tumors classified as low-grade MPNSTs following p53 knockdown (mean, 6 months). Similarly, ~70% of Nf1+/- mice with GFAP-Cre-mediated Nf1 gene inactivation (GFAP-Cre; Nf1(flox/null) mice) developed low-grade MPNSTs following p53 knockdown (mean, 3 months). In addition, wild-type and Nf1+/- mice with GFAP-Cre-mediated Nf1 loss develop MPNSTs following somatic p53 knockout with different latencies, suggesting potential influences of Nf1+/- stromal cells in MPNST pathogenesis. Collectively, this new MPNST model system permits the analysis of somatically-acquired events as well as tumor microenvironment signals that potentially cooperate with Nf1 loss in the development and progression of this deadly malignancy.