- Browse by Author
Browsing by Author "Gutkin, Boris"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Circuit-level Mechanisms of EtOH-dependent dopamine release.(2017-06-30) DiVolo, Matteo; Morozova, Ekaterina; Lapish, Christopher; Kuznetsov, Alexey; Gutkin, Boris; Mathematical Sciences, School of ScienceAlcoholism is the third leading cause of preventable mortality in the world. In the last decades a large body of experimental data has paved the way to a clearer knowledge of the specific molecular targets through which ethanol (EtOH) acts on brain circuits. Yet how these multiple mechanisms play together to result in a dysregulated dopamine (DA) release under alcohol influence remains unclear. In this manuscript, we delineate potential circuit-level mechanisms responsible for EtOH-dependent increase and dysregulation of DA release from the ventral tegmental area (VTA) into nucleus accumbens (Nac). For this purpose, we build a circuit model of the VTA composed of DA and GABAergic neurons, that integrate external Glutamatergic (Glu) inputs to result in DA release. In particular, we reproduced a non-monotonic dose dependence of DA neurons firing activity on EtOH: an increase in firing at small to intermediate doses and a drop below baseline (alcohol-free) levels at high EtOH concentrations. Our simulations predict that a certain level of synchrony is necessary for the firing rate increase produced by EtOH. Moreover, EtOH effect on the DA neuron firing rate and, consequently, DA release can reverse depending on the average activity level of the Glu afferents to VTA. Further, we propose a mechanism for emergence of transient (phasic) DA peaks and the increase in their frequency in EtOH. Phasic DA transients result from DA neuron population bursts, and these bursts are enhanced in EtOH. These results suggest the role of synchrony and average activity level of Glu afferents to VTA in shaping the phasic and tonic DA release under the acute influence of EtOH and in normal conditions.Item Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting(APS Journals, 2016-10-01) Morozova, Ekaterina O.; Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C.; Kuznetsov, Alexey; Mathematical Sciences, School of SciencePresented herein ventral tegmental area microcircuit model challenges the classical view that GABA neurons exclusively reduce dopamine neuron firing and bursting. Rather, high levels of synchrony amongst GABA neurons can produce increases in firing and bursting of the dopamine neuron. Dopamine bursting can be produced in the absence of bursty excitatory input, if the neuron receives transiently synchronized GABA input. We provide an explanation of the mechanisms whereby GABA neurons could contribute to dopamine neuron burst firing., In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca2+) concentration, thus reducing the Ca2+-dependent potassium (K+) current. In this way, the GABA-mediated hyperpolarization replaces Ca2+-dependent K+ current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally.Item Distinct Temporal Structure of Nicotinic ACh Receptor Activation Determines Responses of VTA Neurons to Endogenous ACh and Nicotine(Society for Neuroscience, 2020-07-07) Morozova, Ekaterina; Faure, Philippe; Gutkin, Boris; Lapish, Christoper; Kuznetsov, Alexey; Mathematical Sciences, School of ScienceThe addictive component of tobacco, nicotine, acts via nicotinic acetylcholine receptors (nAChRs). The β2 subunit-containing nAChRs (β2-nAChRs) play a crucial role in the rewarding properties of nicotine and are particularly densely expressed in the mesolimbic dopamine (DA) system. Specifically, nAChRs directly and indirectly affect DA neurons in the ventral tegmental area (VTA). The understanding of ACh and nicotinic regulation of DA neuron activity is incomplete. By computational modeling, we provide mechanisms for several apparently contradictory experimental results. First, systemic knockout of β2-containing nAChRs drastically reduces DA neurons bursting, although the major glutamatergic (Glu) afferents that have been shown to evoke this bursting stay intact. Second, the most intuitive way to rescue this bursting—by re-expressing the nAChRs on VTA DA neurons—fails. Third, nAChR re-expression on VTA GABA neurons rescues bursting in DA neurons and increases their firing rate under the influence of ACh input, whereas nicotinic application results in the opposite changes in firing. Our model shows that, first, without ACh receptors, Glu excitation of VTA DA and GABA neurons remains balanced and GABA inhibition cancels the direct excitation. Second, re-expression of ACh receptors on DA neurons provides an input that impedes membrane repolarization and is ineffective in restoring firing of DA neurons. Third, the distinct responses to ACh and nicotine occur because of distinct temporal patterns of these inputs: pulsatile versus continuous. Altogether, this study highlights how β2-nAChRs influence coactivation of the VTA DA and GABA neurons required for motivation and saliency signals carried by DA neuron activity.Item Dynamical ventral tegmental area circuit mechanisms of alcohol‐dependent dopamine release(Wiley, 2019) di Volo, Matteo; Morozova, Ekaterina O.; Lapish, Christopher C.; Kuznetsov, Alexey; Gutkin, Boris; Psychology, School of ScienceA large body of data has identified numerous molecular targets through which ethanol (EtOH) acts on brain circuits. Yet how these multiple mechanisms interact to result in dysregulated dopamine (DA) release under the influence of alcohol in vivo remains unclear. In this manuscript, we delineate potential circuit‐level mechanisms responsible for EtOH‐dependent dysregulation of DA release from the ventral tegmental area (VTA) into its projection areas. For this purpose, we constructed a circuit model of the VTA that integrates realistic Glutamatergic (Glu) inputs and reproduces DA release observed experimentally. We modelled the concentration‐dependent effects of EtOH on its principal VTA targets. We calibrated the model to reproduce the inverted U‐shape dose dependence of DA neuron activity on EtOH concentration. The model suggests a primary role of EtOH‐induced boost in the Ih and AMPA currents in the DA firing‐rate/bursting increase. This is counteracted by potentiated GABA transmission that decreases DA neuron activity at higher EtOH concentrations. Thus, the model connects well‐established in vitro pharmacological EtOH targets with its in vivo influence on neuronal activity. Furthermore, we predict that increases in VTA activity produced by moderate EtOH doses require partial synchrony and relatively low rates of the Glu afferents. We propose that the increased frequency of transient (phasic) DA peaks evoked by EtOH results from synchronous population bursts in VTA DA neurons. Our model predicts that the impact of acute ETOH on dopamine release is critically shaped by the structure of the cortical inputs to the VTA.Item A role of local VTA GABAergic neurons in mediating dopamine neuron response to nicotine(BMC Neuroscience, 2015-12-18) Morozova, Ekaterina; Myroshnychenko, Maxym; Rooy, Marie; Gutkin, Boris; Lapish, Christopher C.; Kuznetsov, Alexey; Department of Physics, School of ScienceItem Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study(Frontiers Media SA, 2016) Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey; Department of Psychology, School of ScienceDopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency.