- Browse by Author
Browsing by Author "Guskiewicz, Kevin M."
Now showing 1 - 10 of 16
Results Per Page
Sort Options
Item Acute White-Matter Abnormalities in Sports-Related Concussion: A Diffusion Tensor Imaging Study from the NCAA-DoD CARE Consortium(Mary Ann Liebert, 2018-11-15) Mustafi, Sourajit Mitra; Harezlak, Jaroslaw; Koch, Kevin M.; Nencka, Andrew S.; Meier, Timothy B.; West, John D.; Giza, Christopher C.; DiFiori, John P.; Guskiewicz, Kevin M.; Mihalik, Jason P.; LaConte, Stephen M.; Duma, Stefan M.; Broglio, Steven P.; Saykin, Andrew J.; McCrea, Michael; McAllister, Thomas W.; Wu, Yu-Chien; Radiology and Imaging Sciences, School of MedicineSports-related concussion (SRC) is an important public health issue. Although standardized assessment tools are useful in the clinical management of acute concussion, the underlying pathophysiology of SRC and the time course of physiological recovery after injury remain unclear. In this study, we used diffusion tensor imaging (DTI) to detect white matter alterations in football players within 48 h after SRC. As part of the NCAA-DoD CARE Consortium study of SRC, 30 American football players diagnosed with acute concussion and 28 matched controls received clinical assessments and underwent advanced magnetic resonance imaging scans. To avoid selection bias and partial volume effects, whole-brain skeletonized white matter was examined by tract-based spatial statistics to investigate between-group differences in DTI metrics and their associations with clinical outcome measures. Mean diffusivity was significantly higher in brain white matter of concussed athletes, particularly in frontal and subfrontal long white matter tracts. In the concussed group, axial diffusivity was significantly correlated with the Brief Symptom Inventory and there was a similar trend with the symptom severity score of the Sport Concussion Assessment Tool. In addition, concussed athletes with higher fractional anisotropy performed better on the cognitive component of the Standardized Assessment of Concussion. Overall, the results of this study are consistent with the hypothesis that SRC is associated with changes in white matter tracts shortly after injury, and these differences are correlated clinically with acute symptoms and functional impairments.Item Are EPB41 and alpha-synuclein diagnostic biomarkers of sport-related concussion? Findings from the NCAA and Department of Defense CARE Consortium(Elsevier, 2023) Vorn, Rany; Devoto, Christina; Meier, Timothy B.; Lai, Chen; Yun, Sijung; Broglio, Steven P.; Mithani, Sara; McAllister, Thomas W.; Giza, Christopher C.; Kim, Hyung-Suk; Huber, Daniel; Harezlak, Jaroslaw; Cameron, Kenneth L.; McGinty, Gerald; Jackson, Jonathan; Guskiewicz, Kevin M.; Mihalik, Jason P.; Brooks, Alison; Duma, Stefan; Rowson, Steven; Nelson, Lindsay D.; Pasquina, Paul; McCrea, Michael A.; Gill, Jessica M.; CARE Consortium Investigators; Psychiatry, School of MedicineBackground: Current protein biomarkers are only moderately predictive at identifying individuals with mild traumatic brain injury or concussion. Therefore, more accurate diagnostic markers are needed for sport-related concussion. Methods: This was a multicenter, prospective, case-control study of athletes who provided blood samples and were diagnosed with a concussion or were a matched non-concussed control within the National Collegiate Athletic Association-Department of Defense Concussion Assessment, Research, and Education Consortium conducted between 2015 and 2019. The blood was collected within 48 h of injury to identify protein abnormalities at the acute and subacute timepoints. Athletes with concussion were divided into 6 h post-injury (0-6 h post-injury) and after 6 h post-injury (7-48 h post-injury) groups. We applied a highly multiplexed proteomic technique that used a DNA aptamers assay to target 1305 proteins in plasma samples from athletes with and without sport-related concussion. Results: A total of 140 athletes with concussion (79.3% males; aged 18.71 ± 1.10 years, mean ± SD) and 21 non-concussed athletes (76.2% males; 19.14 ± 1.10 years) were included in this study. We identified 338 plasma proteins that significantly differed in abundance (319 upregulated and 19 downregulated) in concussed athletes compared to non-concussed athletes. The top 20 most differentially abundant proteins discriminated concussed athletes from non-concussed athletes with an area under the curve (AUC) of 0.954 (95% confidence interval: 0.922‒0.986). Specifically, after 6 h of injury, the individual AUC of plasma erythrocyte membrane protein band 4.1 (EPB41) and alpha-synuclein (SNCA) were 0.956 and 0.875, respectively. The combination of EPB41 and SNCA provided the best AUC (1.000), which suggests this combination of candidate plasma biomarkers is the best for diagnosing concussion in athletes after 6 h of injury. Conclusion: Our data suggest that proteomic profiling may provide novel diagnostic protein markers and that a combination of EPB41 and SNCA is the most predictive biomarker of concussion after 6 h of injury.Item Association between concussion and mental health in former collegiate athletes(Springer, 2014-12) Kerr, Zachary Y.; Evenson, Kelly R.; Rosamond, Wayne D.; Mihalik, Jason P.; Guskiewicz, Kevin M.; Marshall, Stephen W.; Department of Social and Behavioral Sciences, Richard M. Fairbanks School of Public HealthBACKGROUND: The existing research on the association between concussion and mental health outcomes is largely limited to former professional athletes. This cross-sectional study estimated the association between recurrent concussion and depression, impulsivity, and aggression in former collegiate athletes. METHODS: Former collegiate athletes who played between 1987-2012 at a Division I university completed an online questionnaire. The main exposure, total number of self-recalled concussions (sport-related and non-sport-related), were categorized as: zero (referent), one, two, or three or more concussions. The main outcomes were the depression module of The Patient Health Questionnaire (PHQ-9), the Short Form of the Barratt Impulsiveness scale (BIS15); and the 12-item Short Form of the Buss-Perry Aggression Questionnaire (BPAQ-SF). Depression was categorized into a binomial severity classification that differentiated between no or mild depression (PHQ-9 scores <10) and moderate to severe depression (PHQ-9 scores ≥10). Impulsivity and aggression were kept as continuous outcomes. Binomial regression estimated adjusted prevalence ratios (PR). Linear regression estimated adjusted mean differences (MD). RESULTS: Of the 797 respondents with complete data (21.9% completion rate), 38.8% reported at least one concussion. Controlling for alcohol dependence and family history of depression, the prevalence of moderate to severe depression among former collegiate athletes reporting three or more concussions in total was 2.4 times that of those reporting zero concussions [95% Confidence Interval (CI): 1.0, 5.7]. Controlling for alcohol dependence, family history of anxiety, relationship status, obtaining a post-graduate degree, and playing primary college sport professionally, former collegiate athletes reporting two or more concussions in total had higher mean scores for impulsivity, compared to those reporting no concussions (2 concussions MD = 2.7; 95% CI: 1.2, 4.1; 3+ concussions MD = 1.9; 95% CI: 0.6, 3.2). Controlling for alcohol dependence, sex, and relationship status, former collegiate athletes reporting three or more concussions in total had a higher mean score for aggression, compared to those reporting no concussions (MD = 3.0; 95% CI: 1.4, 4.7). CONCLUSIONS: Our study found an association between former concussion and greater risk of severe depression and higher levels of impulsivity and aggression among former collegiate athletes. Additional prospective studies better addressing causality and ascertaining valid lifetime concussion histories and medical histories are needed.Item The Association Between Persistent White-Matter Abnormalities and Repeat Injury After Sport-Related Concussion(Frontiers Media, 2020-01-21) Brett, Benjamin L.; Wu, Yu-Chien; Mustafi, Sourajit M.; Saykin, Andrew J.; Koch, Kevin M.; Nencka, Andrew S.; Giza, Christopher C.; Goldman, Joshua; Guskiewicz, Kevin M.; Mihalik, Jason P.; Duma, Stefan M.; Broglio, Steven P.; McAllister, Thomas W.; McCrea, Michael A.; Meier, Timothy B.; Radiology and Imaging Sciences, School of MedicineObjective: A recent systematic review determined that the physiological effects of concussion may persist beyond clinical recovery. Preclinical models suggest that ongoing physiological effects are accompanied by increased cerebral vulnerability that is associated with risk for subsequent, more severe injury. This study examined the association between signal alterations on diffusion tensor imaging following clinical recovery of sport-related concussion in athletes with and without a subsequent second concussion. Methods: Average mean diffusivity (MD) was calculated in a region of interest (ROI) in which concussed athletes (n = 82) showed significantly elevated MD acutely after injury (<48 h), at an asymptomatic time point, 7 days post-return to play (RTP), and 6 months relative to controls (n = 69). The relationship between MD in the identified ROI and likelihood of sustaining a subsequent concussion over a 1-year period was examined with a binary logistic regression (re-injured, yes/no). Results: Eleven of 82 concussed athletes (13.4%) sustained a second concussion within 12 months of initial injury. Mean MD at 7 days post-RTP was significantly higher in those athletes who went on to sustain a repeat concussion within 1 year of initial injury than those who did not (p = 0.048; d = 0.75). In this underpowered sample, the relationship between MD at 7 days post-RTP and likelihood of sustaining a secondary injury approached significance [χ2 (1) = 4.17, p = 0.057; B = 0.03, SE = 0.017; OR = 1.03, CI = 0.99, 1.07]. Conclusions: These preliminary findings raise the hypothesis that persistent signal abnormalities in diffusion imaging metrics at RTP following concussion may be predictive of a repeat concussion. This may reflect a window of cerebral vulnerability or increased susceptibility following concussion, though understanding the clinical significance of these findings requires further study.Item Association of Alzheimer’s disease polygenic risk score with concussion severity and recovery metrics(Wiley, 2025-01-09) Dybing, Kaitlyn M.; McAllister, Thomas W.; Wu, Yu-Chien; McDonald, Brenna C.; McCrea, Michael A.; Broglio, Steven P.; Pasquina, Paul F.; Brooks, M. Alison; Mihalik, Jason P.; Guskiewicz, Kevin M.; Giza, Christopher C.; Goldman, Joshua; Duma, Stefan; Rowson, Steve; Svoboda, Steven; Cameron, Kenneth L.; Houston, Megan N.; Campbell, Darren E.; McGinty, Gerald; Jackson, Jonathan; Risacher, Shannon L.; Saykin, Andrew J.; Nudelman, Kelly N.; Radiology and Imaging Sciences, School of MedicineBackground: Shared genetic risk between Alzheimer’s disease (AD) and concussion may help explain the association between concussion and elevated risk for dementia. However, there has been little investigation into whether AD risk genes also associate with concussion severity/recovery, and the limited findings are mixed. We used AD polygenic risk scores (PRS) and APOE genotypes to investigate associations between AD genetic risk and concussion severity/recovery in the NCAA‐DoD Grand Alliance CARE Consortium (CARE) dataset. Method: There were 1,917 injuries in the dataset upon project initiation. After removing repeated injuries, related participants, and those without genetic/outcome data, we had 931 participants. Outcomes were number of days to return to play (RTP) as a recovery measure, and four severity measures (scores on SAC and BESS, SCAT symptom severity and total number of symptoms). We calculated PRS using a published score (de Rojas et al., 2021) and performed a linear regression (MLR) of RTP by PRS in normal (<24 days) and long (>24 days) RTP subgroups. We then compared severity measures by PRS using MLR. Next, we used t‐tests to examine outcomes by APOE genotype in military and civilian subgroups. We also performed chi‐squared tests of RTP category (normal vs. long) by APOE genotype. Finally, we analyzed outcomes by PRS in European or African genetic ancestry subgroups using MLR. Result: Higher PRS was associated with longer injury to RTP interval in the normal RTP (<24 days) subgroup (estimate = 0.0412, SE = 0.182, p = 0.0237). 1 SD increase in PRS resulted in a 0.412 day (9.89 hours) increase to the interval. This may be clinically meaningful in the collegiate athlete environment. We did not identify any other significant differences. Conclusion: Our preliminary results provide limited evidence for an impact of AD PRS on concussion recovery, though the pattern was inconsistent and its clinical significance is uncertain. Future studies should attempt to replicate these findings in larger samples with longer follow‐up using PRS calculated from multiple/diverse populations, which will be especially relevant for diverse datasets like CARE.Item Comparison of Head Impact Exposure Between Concussed Football Athletes and Matched Controls: Evidence for a Possible Second Mechanism of Sport-Related Concussion(Springer, 2018) Stemper, Brian D.; Shah, Alok S.; Harezlak, Jaroslaw; Rowson, Steven; Mihalik, Jason P.; Duma, Stefan M.; Riggen, Larry D.; Brooks, Alison; Cameron, Kenneth L.; Campbell, Darren; DiFiori, John P.; Giza, Christopher C.; Guskiewicz, Kevin M.; Jackson, Jonathan; McGinty, Gerald T.; Svoboda, Steven J.; McAllister, Thomas W.; Broglio, Steven P.; McCrea, Michael; Psychiatry, School of MedicineStudies of football athletes have implicated repetitive head impact exposure in the onset of cognitive and brain structural changes, even in the absence of diagnosed concussion. Those studies imply accumulating damage from successive head impacts reduces tolerance and increases risk for concussion. Support for this premise is that biomechanics of head impacts resulting in concussion are often not remarkable when compared to impacts sustained by athletes without diagnosed concussion. Accordingly, this analysis quantified repetitive head impact exposure in a cohort of 50 concussed NCAA Division I FBS college football athletes compared to controls that were matched for team and position group. The analysis quantified the number of head impacts and risk weighted exposure both on the day of injury and for the season to the date of injury. 43% of concussed athletes had the most severe head impact exposure on the day of injury compared to their matched control group and 46% of concussed athletes had the most severe head impact exposure for the season to the date of injury compared to their matched control group. When accounting for date of injury or season to date of injury, 72% of all concussed athletes had the most or second most severe head impact exposure compared to their matched control group. These trends associating cumulative head impact exposure with concussion onset were stronger for athletes that participated in a greater number of contact activities. For example, 77% of athletes that participated in ten or more days of contact activities had greater head impact exposure than their matched control group. This unique analysis provided further evidence for the role of repetitive head impact exposure as a predisposing factor for the onset of concussion. The clinical implication of these findings supports contemporary trends of limiting head impact exposure for college football athletes during practice activities in an effort to also reduce risk of concussive injury.Item Effects of White-Matter Tract Length in Sport-Related Concussion: A Tractography Study from the NCAA-DoD CARE Consortium(Mary Ann Liebert, Inc., 2022-11) Mustafi, Sourajit M.; Yang, Ho-Ching; Harezlak, Jaroslaw; Meier, Timothy B.; Brett, Benjamin L.; Giza, Christopher C.; Goldman, Joshua; Guskiewicz, Kevin M.; Mihalik, Jason P.; LaConte, Stephen M.; Duma, Stefan M.; Broglio, Steven P.; McCrea, Michael A.; McAllister, Thomas W.; Wu, Yu-Chien; Psychiatry, School of MedicineSport-related concussion (SRC) is an important public health issue. White-matter alterations after SRC are widely studied by neuroimaging approaches, such as diffusion magnetic resonance imaging (MRI). Although the exact anatomical location of the alterations may differ, significant white-matter alterations are commonly observed in long fiber tracts, but are never proven. In the present study, we performed streamline tractography to characterize the association between tract length and white-matter microstructural alterations after SRC. Sixty-eight collegiate athletes diagnosed with acute concussion (24–48 h post-injury) and 64 matched contact-sport controls were included in this study. The athletes underwent diffusion tensor imaging (DTI) in 3.0 T MRI scanners across three study sites. DTI metrics were used for tract-based spatial statistics to map white-matter regions-of-interest (ROIs) with significant group differences. Whole-brain white-mater streamline tractography was performed to extract “affected” white-matter streamlines (i.e., streamlines passing through the identified ROIs). In the concussed athletes, streamline counts and DTI metrics of the affected white-matter fiber tracts were summarized and compared with unaffected white-matter tracts across tract length in the same participant. The affected white-matter tracts had a high streamline count at length of 80–100 mm and high length-adjusted affected ratio for streamline length longer than 80 mm. DTI mean diffusivity was higher in the affected streamlines longer than 100 mm with significant associations with the Brief Symptom Inventory score. Our findings suggest that long fibers in the brains of collegiate athletes are more vulnerable to acute SRC with higher mean diffusivity and a higher affected ratio compared with the whole distribution.Item Effects of White-Matter Tract Length in Sport-Related Concussion: A Tractography Study from the NCAA-DoD CARE Consortium(Mary Ann Liebert, 2022) Mustafi, Sourajit M.; Yang, Ho-Ching; Harezlak, Jaroslaw; Meier, Timothy B.; Brett, Benjamin L.; Giza, Christopher C.; Goldman, Joshua; Guskiewicz, Kevin M.; Mihalik, Jason P.; LaConte, Stephen M.; Duma, Stefan M.; Broglio, Steven P.; McCrea, Michael A.; McAllister, Thomas W.; Wu, Yu-Chien; Radiology and Imaging Sciences, School of MedicineSport-related concussion (SRC) is an important public health issue. White-matter alterations after SRC are widely studied by neuroimaging approaches, such as diffusion magnetic resonance imaging (MRI). Although the exact anatomical location of the alterations may differ, significant white-matter alterations are commonly observed in long fiber tracts, but are never proven. In the present study, we performed streamline tractography to characterize the association between tract length and white-matter microstructural alterations after SRC. Sixty-eight collegiate athletes diagnosed with acute concussion (24–48 h post-injury) and 64 matched contact-sport controls were included in this study. The athletes underwent diffusion tensor imaging (DTI) in 3.0 T MRI scanners across three study sites. DTI metrics were used for tract-based spatial statistics to map white-matter regions-of-interest (ROIs) with significant group differences. Whole-brain white-mater streamline tractography was performed to extract “affected” white-matter streamlines (i.e., streamlines passing through the identified ROIs). In the concussed athletes, streamline counts and DTI metrics of the affected white-matter fiber tracts were summarized and compared with unaffected white-matter tracts across tract length in the same participant. The affected white-matter tracts had a high streamline count at length of 80–100 mm and high length-adjusted affected ratio for streamline length longer than 80 mm. DTI mean diffusivity was higher in the affected streamlines longer than 100 mm with significant associations with the Brief Symptom Inventory score. Our findings suggest that long fibers in the brains of collegiate athletes are more vulnerable to acute SRC with higher mean diffusivity and a higher affected ratio compared with the whole distribution.Item Longitudinal Associations Between Blood Biomarkers and White Matter MRI in Sport-Related Concussion(Wolters Kluwer, 2023) Wu, Yu-Chien; Wen, Qiuting; Thukral, Rhea; Yang, Ho-Ching; Gill, Jessica M.; Gao, Sujuan; Lane, Kathleen A.; Meier, Timothy B.; Riggen, Larry D.; Harezlak, Jaroslaw; Giza, Christopher C.; Goldman, Joshua; Guskiewicz, Kevin M.; Mihalik, Jason P.; LaConte, Stephen M.; Duma, Stefan M.; Broglio, Steven P.; Saykin, Andrew J.; Walker McAllister, Thomas; McCrea, Michael A.; Radiology and Imaging Sciences, School of MedicineBackground and objectives: To study longitudinal associations between blood-based neural biomarkers (including total tau, neurofilament light [NfL], glial fibrillary acidic protein [GFAP], and ubiquitin C-terminal hydrolase-L1) and white matter neuroimaging biomarkers in collegiate athletes with sport-related concussion (SRC) from 24 hours postinjury to 1 week after return to play. Methods: We analyzed clinical and imaging data of concussed collegiate athletes in the Concussion Assessment, Research, and Education (CARE) Consortium. The CARE participants completed same-day clinical assessments, blood draws, and diffusion tensor imaging (DTI) at 3 time points: 24-48 hours postinjury, point of becoming asymptomatic, and 7 days after return to play. DTI probabilistic tractography was performed for each participant at each time point to render 27 participant-specific major white matter tracts. The microstructural organization of these tracts was characterized by 4 DTI metrics. Mixed-effects models with random intercepts were applied to test whether white matter microstructural abnormalities are associated with the blood-based biomarkers at the same time point. An interaction model was used to test whether the association varies across time points. A lagged model was used to test whether early blood-based biomarkers predict later microstructural changes. Results: Data from 77 collegiate athletes were included in the following analyses. Among the 4 blood-based biomarkers, total tau had significant associations with the DTI metrics across the 3 time points. In particular, high tau level was associated with high radial diffusivity (RD) in the right corticospinal tract (β = 0.25, SE = 0.07, p FDR-adjusted = 0.016) and superior thalamic radiation (β = 0.21, SE = 0.07, p FDR-adjusted = 0.042). NfL and GFAP had time-dependent associations with the DTI metrics. NfL showed significant associations only at the asymptomatic time point (|β|s > 0.12, SEs <0.09, psFDR-adjusted < 0.05) and GFAP showed a significant association only at 7 days after return to play (βs > 0.14, SEs <0.06, psFDR-adjusted < 0.05). The p values for the associations of early tau and later RD were not significant after multiple comparison adjustment, but were less than 0.1 in 7 white matter tracts. Discussion: This prospective study using data from the CARE Consortium demonstrated that in the early phase of SRC, white matter microstructural integrity detected by DTI neuroimaging was associated with elevated levels of blood-based biomarkers of traumatic brain injury. Total tau in the blood showed the strongest association with white matter microstructural changes.Item Longitudinal white-matter abnormalities in sports-related concussion: A diffusion MRI study(Wolters Kluwer, 2020-08) Wu, Yu-Chien; Harezlak, Jaroslaw; Elsaid, Nahla M. H.; Lin, Zikai; Wen, Qiuting; Mustafi, Sourajit M.; Riggen, Larry D.; Koch, Kevin M.; Nencka, Andrew S.; Meier, Timothy B.; Mayer, Andrew R.; Wang, Yang; Giza, Christopher C.; DiFiori, John P.; Guskiewicz, Kevin M.; Mihalik, Jason P.; LaConte, Stephen M.; Duma, Stefan M.; Broglio, Steven P.; Saykin, Andrew J.; McCrea, Michael A.; McAllister, Thomas W.; Radiology and Imaging Sciences, School of MedicineObjective To study longitudinal recovery trajectories of white matter after sports-related concussion (SRC) by performing diffusion tensor imaging (DTI) on collegiate athletes who sustained SRC. Methods Collegiate athletes (n = 219, 82 concussed athletes, 68 contact-sport controls, and 69 non–contact-sport controls) were included from the Concussion Assessment, Research and Education Consortium. The participants completed clinical assessments and DTI at 4 time points: 24 to 48 hours after injury, asymptomatic state, 7 days after return-to-play, and 6 months after injury. Tract-based spatial statistics was used to investigate group differences in DTI metrics and to identify white-matter areas with persistent abnormalities. Generalized linear mixed models were used to study longitudinal changes and associations between outcome measures and DTI metrics. Cox proportional hazards model was used to study effects of white-matter abnormalities on recovery time. Results In the white matter of concussed athletes, DTI-derived mean diffusivity was significantly higher than in the controls at 24 to 48 hours after injury and beyond the point when the concussed athletes became asymptomatic. While the extent of affected white matter decreased over time, part of the corpus callosum had persistent group differences across all the time points. Furthermore, greater elevation of mean diffusivity at acute concussion was associated with worse clinical outcome measures (i.e., Brief Symptom Inventory scores and symptom severity scores) and prolonged recovery time. No significant differences in DTI metrics were observed between the contact-sport and non–contact-sport controls. Conclusions Changes in white matter were evident after SRC at 6 months after injury but were not observed in contact-sport exposure. Furthermore, the persistent white-matter abnormalities were associated with clinical outcomes and delayed recovery time