- Browse by Author
Browsing by Author "Guskiewicz, Kevin"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Assessment of Blood Biomarker Profile After Acute Concussion During Combative Training Among US Military Cadets(JAMA, 2021-02) Giza, Christopher C.; McCrea, Michael; Huber, Daniel; Cameron, Kenneth L.; Houston, Megan N.; Jackson, Jonathan C.; McGinty, Gerald; Pasquina, Paul; Broglio, Steven P.; Brooks, Alison; DiFiori, John; Duma, Stefan; Harezlak, Jaroslaw; Goldman, Joshua; Guskiewicz, Kevin; McAllister, Thomas W.; McArthur, David; Meier, Timothy B.; Mihalik, Jason P.; Nelson, Lindsay D.; Rowson, Steven; Gill, Jessica; Foroud, Tatiana; Katz, Barry; Saykin, Andrew; Campbell, Darren E.; Svoboda, Steven; Psychiatry, School of MedicineImportance: Validation of protein biomarkers for concussion diagnosis and management in military combative training is important, as these injuries occur outside of traditional health care settings and are generally difficult to diagnose. Objective: To investigate acute blood protein levels in military cadets after combative training-associated concussions. Design, setting, and participants: This multicenter prospective case-control study was part of a larger cohort study conducted by the National Collegiate Athletic Association and the US Department of Defense Concussion Assessment Research and Education (CARE) Consortium from February 20, 2015, to May 31, 2018. The study was performed among cadets from 2 CARE Consortium Advanced Research Core sites: the US Military Academy at West Point and the US Air Force Academy. Cadets who incurred concussions during combative training (concussion group) were compared with cadets who participated in the same combative training exercises but did not incur concussions (contact-control group). Clinical measures and blood sample collection occurred at baseline, the acute postinjury point (<6 hours), the 24- to 48-hour postinjury point, the asymptomatic postinjury point (defined as the point at which the cadet reported being asymptomatic and began the return-to-activity protocol), and 7 days after return to activity. Biomarker levels and estimated mean differences in biomarker levels were natural log (ln) transformed to decrease the skewness of their distributions. Data were collected from August 1, 2016, to May 31, 2018, and analyses were conducted from March 1, 2019, to January 14, 2020. Exposure: Concussion incurred during combative training. Main outcomes and measures: Proteins examined included glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, neurofilament light chain, and tau. Quantification was conducted using a multiplex assay (Simoa; Quanterix Corp). Clinical measures included the Sport Concussion Assessment Tool-Third Edition symptom severity evaluation, the Standardized Assessment of Concussion, the Balance Error Scoring System, and the 18-item Brief Symptom Inventory. Results: Among 103 military service academy cadets, 67 cadets incurred concussions during combative training, and 36 matched cadets who engaged in the same training exercises did not incur concussions. The mean (SD) age of cadets in the concussion group was 18.6 (1.3) years, and 40 cadets (59.7%) were male. The mean (SD) age of matched cadets in the contact-control group was 19.5 (1.3) years, and 25 cadets (69.4%) were male. Compared with cadets in the contact-control group, those in the concussion group had significant increases in glial fibrillary acidic protein (mean difference in ln values, 0.34; 95% CI, 0.18-0.50; P < .001) and ubiquitin C-terminal hydrolase-L1 (mean difference in ln values, 0.97; 95% CI, 0.44-1.50; P < .001) levels at the acute postinjury point. The glial fibrillary acidic protein level remained high in the concussion group compared with the contact-control group at the 24- to 48-hour postinjury point (mean difference in ln values, 0.22; 95% CI, 0.06-0.38; P = .007) and the asymptomatic postinjury point (mean difference in ln values, 0.21; 95% CI, 0.05-0.36; P = .01). The area under the curve for all biomarkers combined, which was used to differentiate cadets in the concussion and contact-control groups, was 0.80 (95% CI, 0.68-0.93; P < .001) at the acute postinjury point. Conclusions and relevance: This study's findings indicate that blood biomarkers have potential for use as research tools to better understand the pathobiological changes associated with concussion and to assist with injury identification and recovery from combative training-associated concussions among military service academy cadets. These results extend the previous findings of studies of collegiate athletes with sport-associated concussions.Item Association of Blood Biomarkers With Acute Sport-Related Concussion in Collegiate Athletes: Findings From the NCAA and Department of Defense CARE Consortium(JAMA Network, 2020-01-03) McCrea, Michael; Broglio, Steven P.; McAllister, Thomas W.; Gill, Jessica; Giza, Christopher C.; Huber, Daniel L.; Harezlak, Jaroslaw; Cameron, Kenneth L.; Houston, Megan N.; McGinty, Gerald; Jackson, Jonathan C.; Guskiewicz, Kevin; Mihalik, Jason; Brooks, M. Alison; Duma, Stephan; Rowson, Steven; Nelson, Lindsay D.; Pasquina, Paul; Meier, Timothy B.; CARE Consortium Investigators; Foroud, Tatiana; Katz, Barry P.; Saykin, Andrew J.; Campbell, Darren E.; Svoboda, Steven J.; Goldman, Joshua; DiFiori, Jon; Psychiatry, School of MedicineImportance: There is potential scientific and clinical value in validation of objective biomarkers for sport-related concussion (SRC). Objective: To investigate the association of acute-phase blood biomarker levels with SRC in collegiate athletes. Design, Setting, and Participants: This multicenter, prospective, case-control study was conducted by the National Collegiate Athletic Association (NCAA) and the US Department of Defense Concussion Assessment, Research, and Education (CARE) Consortium from February 20, 2015, to May 31, 2018, at 6 CARE Advanced Research Core sites. A total of 504 collegiate athletes with concussion, contact sport control athletes, and non-contact sport control athletes completed clinical testing and blood collection at preseason baseline, the acute postinjury period, 24 to 48 hours after injury, the point of reporting being asymptomatic, and 7 days after return to play. Data analysis was conducted from March 1 to November 30, 2019. Main Outcomes and Measures: Glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light chain, and tau were quantified using the Quanterix Simoa multiplex assay. Clinical outcome measures included the Sport Concussion Assessment Tool-Third Edition (SCAT-3) symptom evaluation, Standardized Assessment of Concussion, Balance Error Scoring System, and Brief Symptom Inventory 18. Results: A total of 264 athletes with concussion (mean [SD] age, 19.08 [1.24] years; 211 [79.9%] male), 138 contact sport controls (mean [SD] age, 19.03 [1.27] years; 107 [77.5%] male), and 102 non-contact sport controls (mean [SD] age, 19.39 [1.25] years; 82 [80.4%] male) were included in the study. Athletes with concussion had significant elevation in GFAP (mean difference, 0.430 pg/mL; 95% CI, 0.339-0.521 pg/mL; P < .001), UCH-L1 (mean difference, 0.449 pg/mL; 95% CI, 0.167-0.732 pg/mL; P < .001), and tau levels (mean difference, 0.221 pg/mL; 95% CI, 0.046-0.396 pg/mL; P = .004) at the acute postinjury time point compared with preseason baseline. Longitudinally, a significant interaction (group × visit) was found for GFAP (F7,1507.36 = 16.18, P < .001), UCH-L1 (F7,1153.09 = 5.71, P < .001), and tau (F7,1480.55 = 6.81, P < .001); the interaction for neurofilament light chain was not significant (F7,1506.90 = 1.33, P = .23). The area under the curve for the combination of GFAP and UCH-L1 in differentiating athletes with concussion from contact sport controls at the acute postinjury period was 0.71 (95% CI, 0.64-0.78; P < .001); the acute postinjury area under the curve for all 4 biomarkers combined was 0.72 (95% CI, 0.65-0.79; P < .001). Beyond SCAT-3 symptom score, GFAP at the acute postinjury time point was associated with the classification of athletes with concussion from contact controls (β = 12.298; 95% CI, 2.776-54.481; P = .001) and non-contact sport controls (β = 5.438; 95% CI, 1.676-17.645; P = .005). Athletes with concussion with loss of consciousness or posttraumatic amnesia had significantly higher levels of GFAP than athletes with concussion with neither loss of consciousness nor posttraumatic amnesia at the acute postinjury time point (mean difference, 0.583 pg/mL; 95% CI, 0.369-0.797 pg/mL; P < .001). Conclusions and Relevance: The results suggest that blood biomarkers can be used as research tools to inform the underlying pathophysiological mechanism of concussion and provide additional support for future studies to optimize and validate biomarkers for potential clinical use in SRC.Item Cerebral blood flow in acute concussion: preliminary ASL findings from the NCAA-DoD CARE consortium(Springer, 2019-10-01) Wang, Yang; Nencka, Andrew S.; Meier, Timothy B.; Guskiewicz, Kevin; Mihalik, Jason P.; Alison Brooks, M.; Saykin, Andrew J.; Koch, Kevin M.; Wu, Yu-Chien; Nelson, Lindsay D.; McAllister, Thomas W.; Broglio, Steven P.; McCrea, Michael A.; Radiology and Imaging Sciences, School of MedicineSport-related concussion (SRC) has become a major health problem, affecting millions of athletes each year. Despite the increasing occurrence and prevalence of SRC, its underlying mechanism and recovery course have yet to be fully elucidated. The National Collegiate Athletic Association–Department of Defense Grand Alliance: Concussion Assessment, Research and Education (CARE) Consortium is a large-scale, multisite study of the natural history of concussion across multiple sports. The Advanced Research Core (ARC) of CARE is focused on the advanced biomarker assessment of a reduced subject cohort. This paper reports findings from two ARC sites to evaluate cerebral blood flow (CBF) changes in acute SRC, as measured using advanced arterial spin labeling (ASL) magnetic resonance imaging (MRI). We compared relative CBF maps assessed in 24 concussed contact sport athletes obtained at 24–48 h after injury to those of a control group of 24 matched contact sport players. Significantly less CBF was detected in several brain regions in concussed athletes, while clinical assessments also indicated clinical symptom and performance impairments in SRC patients. Correlations were found between decreased CBF in acute SRC and clinical assessments, including Balance Error Scoring System total score and Immediate Post-Concussion Assessment and Cognitive Test memory composite and impulse control composite scores, as well as days from injury to asymptomatic. Although using different ASL MRI sequences, our preliminary results from two sites are consistent with previous reports and suggest that advanced ASL MRI methods might be useful for detecting acute neurobiological changes in acute SRC.Item Diffusion tensor analysis of white matter tracts is prognostic of persisting post-concussion symptoms in collegiate athletes(Elsevier, 2024) Bertò, Giulia; Rooks, Lauren T.; Broglio, Steven P.; McAllister, Thomas A.; McCrea, Michael A.; Pasquina, Paul F.; Giza, Christopher; Brooks, Alison; Mihalik, Jason; Guskiewicz, Kevin; Goldman, Josh; Duma, Stefan; Rowson, Steven; Port, Nicholas L.; Pestilli, Franco; Psychiatry, School of MedicineBackground and objectives: After a concussion diagnosis, the most important issue for patients and loved ones is how long it will take them to recover. The main objective of this study is to develop a prognostic model of concussion recovery. This model would benefit many patients worldwide, allowing for early treatment intervention. Methods: The Concussion Assessment, Research and Education (CARE) consortium study enrolled collegiate athletes from 30 sites (NCAA athletic departments and US Department of Defense service academies), 4 of which participated in the Advanced Research Core, which included diffusion-weighted MRI (dMRI) data collection. We analyzed the dMRI data of 51 injuries of concussed athletes scanned within 48 h of injury. All athletes were cleared to return-to-play by the local medical staff following a standardized, graduated protocol. The primary outcome measure is days to clearance of unrestricted return-to-play. Injuries were divided into early (return-to-play < 28 days) and late (return-to-play >= 28 days) recovery based on the return-to-play clinical records. The late recovery group meets the standard definition of Persisting Post-Concussion Symptoms (PPCS). Data were processed using automated, state-of-the-art, rigorous methods for reproducible data processing using brainlife.io. All processed data derivatives are made available at https://brainlife.io/project/63b2ecb0daffe2c2407ee3c5/dataset. The microstructural properties of 47 major white matter tracts, 5 callosal, 15 subcortical, and 148 cortical structures were mapped. Fractional Anisotropy (FA) and Mean Diffusivity (MD) were estimated for each tract and structure. Correlation analysis and Receiver Operator Characteristic (ROC) analysis were then performed to assess the association between the microstructural properties and return-to-play. Finally, a Logistic Regression binary classifier (LR-BC) was used to classify the injuries between the two recovery groups. Results: The mean FA across all white matter volume was negatively correlated with return-to-play (r = -0.38, p = 0.00001). No significant association between mean MD and return-to-play was found, neither for FA nor MD for any other structure. The mean FA of 47 white matter tracts was negatively correlated with return-to-play (rμ = -0.27; rσ = 0.08; rmin = -0.1; rmax = -0.43). Across all tracts, a large mean ROC Area Under the Curve (AUCFA) of 0.71 ± 0.09 SD was found. The top classification performance of the LR-BC was AUC = 0.90 obtained using the 16 statistically significant white matter tracts. Discussion: Utilizing a free, open-source, and automated cloud-based neuroimaging pipeline and app (https://brainlife.io/docs/tutorial/using-clairvoy/), a prognostic model has been developed, which predicts athletes at risk for slow recovery (PPCS) with an AUC=0.90, balanced accuracy = 0.89, sensitivity = 1.0, and specificity = 0.79. The small number of participants in this study (51 injuries) is a significant limitation and supports the need for future large concussion dMRI studies and focused on recovery.Item Opportunities for Prevention of Concussion and Repetitive Head Impact Exposure in College Football Players: A Concussion Assessment, Research, and Education (CARE) Consortium Study(American Medical Association, 2021) McCrea, Michael A.; Shah, Alok; Duma, Stefan; Rowson, Steven; Harezlak, Jaroslaw; McAllister, Thomas W.; Broglio, Steven P.; Giza, Christopher C.; Goldman, Joshua; Cameron, Kenneth L.; Houston, Megan N.; McGinty, Gerald; Jackson, Jonathan C.; Guskiewicz, Kevin; Mihalik, Jason P.; Brooks, M. Alison; Pasquina, Paul; Stemper, Brian D.; Psychiatry, School of MedicineImportance: Concussion ranks among the most common injuries in football. Beyond the risks of concussion are growing concerns that repetitive head impact exposure (HIE) may increase risk for long-term neurologic health problems in football players. Objective: To investigate the pattern of concussion incidence and HIE across the football season in collegiate football players. Design, setting, and participants: In this observational cohort study conducted from 2015 to 2019 across 6 Division I National Collegiate Athletic Association (NCAA) football programs participating in the Concussion Assessment, Research, and Education (CARE) Consortium, a total of 658 collegiate football players were instrumented with the Head Impact Telemetry (HIT) System (46.5% of 1416 eligible football players enrolled in the CARE Advanced Research Core). Players were prioritized for instrumentation with the HIT System based on their level of participation (ie, starters prioritized over reserves). Exposure: Participation in collegiate football games and practices from 2015 to 2019. Main outcomes and measures: Incidence of diagnosed concussion and HIE from the HIT System. Results: Across 5 seasons, 528 684 head impacts recorded from 658 players (all male, mean age [SD], 19.02 [1.25] years) instrumented with the HIT System during football practices or games met quality standards for analysis. Players sustained a median of 415 (interquartile range [IQR], 190-727) recorded head impacts (ie, impacts) per season. Sixty-eight players sustained a diagnosed concussion. In total, 48.5% of concussions (n = 33) occurred during preseason training, despite preseason representing only 20.8% of the football season (0.059 preseason vs 0.016 regular-season concussions per team per day; mean difference, 0.042; 95% CI, 0.020-0.060; P = .001). Total HIE in the preseason occurred at twice the proportion of the regular season (324.9 vs 162.4 impacts per team per day; mean difference, 162.6; 95% CI, 110.9-214.3; P < .001). Every season, HIE per athlete was highest in August (preseason) (median, 146.0 impacts; IQR, 63.0-247.8) and lowest in November (median, 80.0 impacts; IQR, 35.0-148.0). Over 5 seasons, 72% of concussions (n = 49) (game proportion, 0.28; 95% CI, 0.18-0.40; P < .001) and 66.9% of HIE (262.4 practices vs 137.2 games impacts per player; mean difference, 125.3; 95% CI, 110.0-140.6; P < .001) occurred in practice. Even within the regular season, total HIE in practices (median, 175.0 impacts per player per season; IQR, 76.0-340.5) was 84.2% higher than in games (median, 95.0 impacts per player per season; IQR, 32.0-206.0). Conclusions and relevance: Concussion incidence and HIE among college football players are disproportionately higher in the preseason than regular season, and most concussions and HIE occur during football practices, not games. These data point to a powerful opportunity for policy, education, and other prevention strategies to make the greatest overall reduction in concussion incidence and HIE in college football, particularly during preseason training and football practices throughout the season, without major modification to game play. Strategies to prevent concussion and HIE have important implications to protecting the safety and health of football players at all competitive levels.Item Plasma Biomarker Concentrations Associated With Return to Sport Following Sport-Related Concussion in Collegiate Athletes—A Concussion Assessment, Research, and Education (CARE) Consortium Study(American Medical Association, 2020-08-27) Pattinson, Cassandra L.; Meier, Timothy B.; Guedes, Vivian A.; Lai, Chen; Devoto, Christina; Haight, Thaddeus; Broglio, Steven P.; McAllister, Thomas; Giza, Christopher; Huber, Daniel; Harezlak, Jaroslaw; Cameron, Kenneth; McGinty, Gerald; Jackson, Jonathan; Guskiewicz, Kevin; Mihalik, Jason; Brooks, Alison; Duma, Stefan; Rowson, Steven; Nelson, Lindsay D.; Pasquina, Paul; McCrea, Michael; Gill, Jessica M.; Investigators for the CARE Consortium; Psychiatry, School of MedicineImportance: Identifying plasma biomarkers associated with the amount of time an athlete may need before they return to sport (RTS) following a sport-related concussion (SRC) is important because it may help to improve the health and safety of athletes. Objective: To examine whether plasma biomarkers can differentiate collegiate athletes who RTS in less than 14 days or 14 days or more following SRC. Design, Setting, and Participants: This multicenter prospective diagnostic study, conducted by the National Collegiate Athletics Association–Department of Defense Concussion Assessment, Research, and Education Consortium, included 127 male and female athletes who had sustained an SRC while enrolled at 6 Concussion Assessment, Research, and Education Consortium Advanced Research Core sites as well as 2 partial–Advanced Research Core military service academies. Data were collected between February 2015 and May 2018. Athletes with SRC completed clinical testing and blood collection at preseason (baseline), postinjury (0-21 hours), 24 to 48 hours postinjury, time of symptom resolution, and 7 days after unrestricted RTS. Main Outcomes and Measures: A total of 3 plasma biomarkers (ie, total tau protein, glial fibrillary acidic protein [GFAP], and neurofilament light chain protein [Nf-L]) were measured using an ultrasensitive single molecule array technology and were included in the final analysis. RTS was examined between athletes who took less than 14 days vs those who took 14 days or more to RTS following SRC. Linear mixed models were used to identify significant interactions between period by RTS group. Area under the receiver operating characteristic curve analyses were conducted to examine whether these plasma biomarkers could discriminate between RTS groups. Results: The 127 participants had a mean (SD) age of 18.9 (1.3) years, and 97 (76.4%) were men; 65 (51.2%) took less than 14 days to RTS, and 62 (48.8%) took 14 days or more to RTS. Linear mixed models identified significant associations for both mean (SE) plasma total tau (24-48 hours postinjury, <14 days RTS vs ≥14 days RTS: −0.65 [0.12] pg/mL vs −0.14 [0.14] pg/mL; P = .008) and GFAP (postinjury, 14 days RTS vs ≥14 days RTS: 4.72 [0.12] pg/mL vs 4.39 [0.11] pg/mL; P = .04). Total tau at the time of symptom resolution had acceptable discrimination power (area under the receiver operating characteristic curve, 0.75; 95% CI, 0.63-0.86; P < .001). We also examined a combined plasma biomarker panel that incorporated Nf-L, GFAP, and total tau at each period to discriminate RTS groups. Although the analyses did reach significance at each time period when combined, results indicated that they were poor at distinguishing the groups (area under the receiver operating characteristic curve, <0.7). Conclusions and Relevance: The findings of this study suggest that measures of total tau and GFAP may identify athletes who will require more time to RTS. However, further research is needed to improve our ability to determine recovery following an SRC.Item Plasma Biomarker Concentrations Associated With Return to Sport Following Sport-Related Concussion in Collegiate Athletes—A Concussion Assessment, Research, and Education (CARE) Consortium Study(American Medical Association, 2020-08-27) Pattinson, Cassandra L.; Meier, Timothy B.; Guedes, Vivian A.; Lai, Chen; Devoto, Christina; Haight, Thaddeus; Broglio, Steven P.; McAllister, Thomas; Giza, Christopher; Huber, Daniel; Harezlak, Jaroslaw; Cameron, Kenneth; McGinty, Gerald; Jackson, Jonathan; Guskiewicz, Kevin; Mihalik, Jason; Brooks, Alison; Duma, Stefan; Rowson, Steven; Nelson, Lindsay D.; Pasquina, Paul; McCrea, Michael; Gill, Jessica M.; CARE Consortium Investigators; Psychiatry, School of MedicineImportance Identifying plasma biomarkers associated with the amount of time an athlete may need before they return to sport (RTS) following a sport-related concussion (SRC) is important because it may help to improve the health and safety of athletes. Objective To examine whether plasma biomarkers can differentiate collegiate athletes who RTS in less than 14 days or 14 days or more following SRC. Design, Setting, and Participants This multicenter prospective diagnostic study, conducted by the National Collegiate Athletics Association–Department of Defense Concussion Assessment, Research, and Education Consortium, included 127 male and female athletes who had sustained an SRC while enrolled at 6 Concussion Assessment, Research, and Education Consortium Advanced Research Core sites as well as 2 partial–Advanced Research Core military service academies. Data were collected between February 2015 and May 2018. Athletes with SRC completed clinical testing and blood collection at preseason (baseline), postinjury (0-21 hours), 24 to 48 hours postinjury, time of symptom resolution, and 7 days after unrestricted RTS. Main Outcomes and Measures A total of 3 plasma biomarkers (ie, total tau protein, glial fibrillary acidic protein [GFAP], and neurofilament light chain protein [Nf-L]) were measured using an ultrasensitive single molecule array technology and were included in the final analysis. RTS was examined between athletes who took less than 14 days vs those who took 14 days or more to RTS following SRC. Linear mixed models were used to identify significant interactions between period by RTS group. Area under the receiver operating characteristic curve analyses were conducted to examine whether these plasma biomarkers could discriminate between RTS groups. Results The 127 participants had a mean (SD) age of 18.9 (1.3) years, and 97 (76.4%) were men; 65 (51.2%) took less than 14 days to RTS, and 62 (48.8%) took 14 days or more to RTS. Linear mixed models identified significant associations for both mean (SE) plasma total tau (24-48 hours postinjury, <14 days RTS vs ≥14 days RTS: −0.65 [0.12] pg/mL vs −0.14 [0.14] pg/mL; P = .008) and GFAP (postinjury, 14 days RTS vs ≥14 days RTS: 4.72 [0.12] pg/mL vs 4.39 [0.11] pg/mL; P = .04). Total tau at the time of symptom resolution had acceptable discrimination power (area under the receiver operating characteristic curve, 0.75; 95% CI, 0.63-0.86; P < .001). We also examined a combined plasma biomarker panel that incorporated Nf-L, GFAP, and total tau at each period to discriminate RTS groups. Although the analyses did reach significance at each time period when combined, results indicated that they were poor at distinguishing the groups (area under the receiver operating characteristic curve, <0.7). Conclusions and Relevance The findings of this study suggest that measures of total tau and GFAP may identify athletes who will require more time to RTS. However, further research is needed to improve our ability to determine recovery following an SRC.Item Plasma phosphorylated tau181 as a biomarker of mild traumatic brain injury: findings from THINC and NCAA-DoD CARE Consortium prospective cohorts(Frontiers Media, 2023-08-17) Devoto, Christina; Vorn, Rany; Mithani, Sara; Meier, Timothy B.; Lai, Chen; Broglio, Steven P.; McAllister, Thomas; Giza, Christopher C.; Huber, Daniel; Harezlak, Jaroslaw; Cameron, Kenneth L.; McGinty, Gerald; Jackson, Jonathan; Guskiewicz, Kevin; Mihalik, Jason P.; Brooks, Alison; Duma, Stefan; Rowson, Steven; Nelson, Lindsay D.; Pasquina, Paul; Turtzo, Christine; Latour, Lawrence; McCrea, Michael A.; Gill, Jessica M.; Psychiatry, School of MedicineObjective: The aim of this study was to investigate phosphorylated tau (p-tau181) protein in plasma in a cohort of mild traumatic brain injury (mTBI) patients and a cohort of concussed athletes. Methods: This pilot study comprised two independent cohorts. The first cohort-part of a Traumatic Head Injury Neuroimaging Classification (THINC) study-with a mean age of 46 years was composed of uninjured controls (UIC, n = 30) and mTBI patients (n = 288) recruited from the emergency department with clinical computed tomography (CT) and research magnetic resonance imaging (MRI) findings. The second cohort-with a mean age of 19 years-comprised 133 collegiate athletes with (n = 112) and without (n = 21) concussions. The participants enrolled in the second cohort were a part of a multicenter, prospective, case-control study conducted by the NCAA-DoD Concussion Assessment, Research and Education (CARE) Consortium at six CARE Advanced Research Core (ARC) sites between 2015 and 2019. Blood was collected within 48 h of injury for both cohorts. Plasma concentration (pg/ml) of p-tau181 was measured using the Single Molecule Array ultrasensitive assay. Results: Concentrations of plasma p-tau181 in both cohorts were significantly elevated compared to controls within 48 h of injury, with the highest concentrations of p-tau181 within 18 h of injury, with an area under the curve (AUC) of 0.690-0.748, respectively, in distinguishing mTBI patients and concussed athletes from controls. Among the mTBI patients, the levels of plasma p-tau181 were significantly higher in patients with positive neuroimaging (either CT+/MRI+, n = 74 or CT-/MRI+, n = 89) compared to mTBI patients with negative neuroimaging (CT-/MRI-, n = 111) findings and UIC (P-values < 0.05). Conclusion: These findings indicate that plasma p-tau181 concentrations likely relate to brain injury, with the highest levels in patients with neuroimaging evidence of injury. Future research is needed to replicate and validate this protein assay's performance as a possible early diagnostic biomarker for mTBI/concussions.Item Return to play and risk of repeat concussion in collegiate football players: comparative analysis from the NCAA Concussion Study (1999–2001) and CARE Consortium (2014–2017)(BMJ, 2020) McCrea, Michael; Broglio, Steven P.; McAllister, Thomas; Zhou, Wenxian; Zhao, Shi; Katz, Barry P.; Kudela, Maria; Harezlak, Jaroslaw; Nelson, Lindsay D.; Meier, Timothy B.; Marshall, Stephen W.; Guskiewicz, Kevin; Psychiatry, School of MedicineObjective We compared data from the National Collegiate Athletic Association (NCAA) Concussion Study (1999–2001) and the NCAA-Department of Defense Concussion Assessment, Research and Education (CARE) Consortium (2014–2017) to examine how clinical management, return to play (RTP) and risk of repeat concussion in collegiate football players have changed over the past 15 years. Methods We analysed data on reported duration of symptoms, symptom-free waiting period (SFWP), RTP and occurrence of within-season repeat concussion in collegiate football players with diagnosed concussion from the NCAA Study (n=184) and CARE (n=701). Results CARE athletes had significantly longer symptom duration (CARE median=5.92 days, IQR=3.02–9.98 days; NCAA median=2.00 days, IQR=1.00–4.00 days), SFWP (CARE median=6.00 days, IQR=3.49–9.00 days; NCAA median=0.98 days, IQR=0.00–4.00 days) and RTP (CARE median=12.23 days, IQR=8.04–18.92 days; NCAA median=3.00 days, IQR=1.00–8.00 days) than NCAA Study athletes (all p<0.0001). In CARE, there was only one case of repeat concussion within 10 days of initial injury (3.7% of within-season repeat concussions), whereas 92% of repeat concussions occurred within 10 days in the NCAA Study (p<0.001). The average interval between first and repeat concussion in CARE was 56.41 days, compared with 5.59 days in the NCAA Study (M difference=50.82 days; 95% CI 38.37 to 63.27; p<0.0001). Conclusion Our findings indicate that concussion in collegiate football is managed more conservatively than 15 years ago. These changes in clinical management appear to have reduced the risk of repetitive concussion during the critical period of cerebral vulnerability after sport-related concussion (SRC). These data support international guidelines recommending additional time for brain recovery before athletes RTP after SRC.