- Browse by Author
Browsing by Author "Guo, Yunxia"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Dose analysis of photobiomodulation therapy on osteoblast, osteoclast, and osteocyte(SPIE, 2018-07) Na, Sungsoo; TruongVo, ThucNhi; Jiang, Feifei; Joll, Jeffery E.; Guo, Yunxia; Utreja, Achint; Chen, Jie; Biomedical Engineering, School of Engineering and TechnologyThe objective of this study was to evaluate the effects of varying light doses on the viability and cellular activity of osteoblasts, osteocytes, and osteoclasts. A light application device was developed to apply 940-nm wavelength light from light-emitting diodes on three cultured cells, MC3T3-E1, MLO-A5, and RANKL-treated RAW264.7 cells. The doses (energy density) on cells were 0, 1, 5, and 7.5 J / cm2. The corresponding light power densities at the cell site were 0, 1.67, 8.33, and 12.5 mW / cm2, respectively, and the duration was 10 min. The results showed that the three cell types respond differently to light and their responses were dose dependent. Low-dose treatment (1 J / cm2) enhanced osteoblast proliferation, osteoclast differentiation, and osteoclastic bone resorption activity. Osteocyte proliferation was not affected by both low- and high-dose (5 J / cm2) treatments. While 1 J / cm2 did not affect viability of all three cell types, 5 J / cm2 significantly decreased viability of osteocytes and osteoclasts. Osteoblast viability was negatively impacted by the higher dose (7.5 J / cm2). The findings suggest that optimal doses exist for osteoblast and osteoclast, which can stimulate cell activities, and there is a safe dose range for each type of cell tested.Item Effects of a checkpoint kinase inhibitor, AZD7762, on tumor suppression and bone remodeling(Spandidos Publications, 2018-09) Wang, Luqi; Wang, Yue; Chen, Andy; Jalali, Aydin; Liu, Shengzhi; Guo, Yunxia; Na, Sungsoo; Nakshatri, Harikrishna; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyChemotherapy for suppressing tumor growth and metastasis tends to induce various effects on other organs. Using AZD7762, an inhibitor of checkpoint kinase (Chk) 1 and 2, the present study examined its effect on mammary tumor cells in addition to bone cells (osteoclasts, osteoblasts and osteocytes), using monolayer cell cultures and three-dimensional (3D) cell spheroids. The results revealed that AZD7762 blocked the proliferation of 4T1.2 mammary tumor cells and suppressed the development of RAW264.7 pre-osteoclast cells by downregulating nuclear factor of activated T cells cytoplasmic 1. AZD7762 also promoted the mineralization of MC3T3 osteoblast-like cells and 3D bio-printed bone constructs of MLO-A5 osteocyte spheroids. While a Chk1 inhibitor, PD407824, suppressed the proliferation of tumor cells and the differentiation of pre-osteoclasts, its effect on gene expression in osteoblasts was markedly different compared with AZD7762. Western blotting indicated that the stimulating effect of AZD7762 on osteoblast development was associated with the inhibition of Chk2 and the downregulation of cellular tumor antigen p53. The results of the present study indicated that in addition to acting as a tumor suppressor, AZD7762 may prevent bone loss by inhibiting osteoclastogenesis and stimulating osteoblast mineralization.Item Fluid flow-induced activation of subcellular AMPK and its interaction with FAK and Src(Elsevier, 2020-01) Guo, Yunxia; Steele, Hannah E.; Li, Bai-Yan; Na, Sungsoo; Biomedical Engineering, School of Engineering and TechnologyAMP-activated protein kinase (AMPK) is a metabolic energy sensor that plays a critical role in cancer cell survival and growth. While the physical microenvironment is believed to influence tumor growth and progression, its role in AMPK regulation remains largely unknown. In the present study, we evaluated AMPK response to mechanical forces and its interaction with other mechano-responsive signaling proteins, FAK and Src. Using genetically encoded biosensors that can detect AMPK activities at different subcellular locations (cytosol, plasma membrane, nucleus, mitochondria, and Golgi apparatus), we observed that AMPK responds to shear stress in a subcellular location-dependent manner in breast cancer cells (MDA-MB-231). While normal epithelial cells (MCF-10A) also similarly responded to shear stress, they are less sensitive to shear stress compared to MDA-MB-231 cells. Inhibition of FAK and Src significantly decreased the basal activity level of AMPK at all five subcellular locations in MDA-MB-231 cells and selectively blocked shear stress-induced AMPK activation. Moreover, testing with cytoskeletal drugs revealed that myosin II might be the critical mediator of shear stress-induced AMPK activation in MDA-MB-231 cells. These findings suggest that breast cancer cells and normal epithelial cells may have different mechanosensitivity in AMPK signaling and that FAK and Src as well as the myosin II-dependent signaling pathway are involved in subcellular AMPK mechanotransduction in breast cancer cells.Item Mechanotransduction of mitochondrial AMPK and its distinct role in flow-induced breast cancer cell migration(Elsevier, 2019-06) Steele, Hannah E.; Guo, Yunxia; Li, Bai-Yan; Na, Sungsoo; Biomedical Engineering, School of Engineering and TechnologyThe biophysical microenvironment of the tumor site has significant impact on breast cancer progression and metastasis. The importance of altered mechanotransduction in cancerous tissue has been documented, yet its role in the regulation of cellular metabolism and the potential link between cellular energy and cell migration remain poorly understood. In this study, we investigated the role of mechanotransduction in AMP-activated protein kinase (AMPK) activation in breast cancer cells in response to interstitial fluid flow (IFF). Additionally, we explored the involvement of AMPK in breast cancer cell migration. IFF was applied to the 3D cell-matrix construct. The subcellular signaling activity of Src, FAK, and AMPK was visualized in real-time using fluorescent resonance energy transfer (FRET). We observed that breast cancer cells (MDA-MB-231) are more sensitive to IFF than normal epithelial cells (MCF-10A). AMPK was activated at the mitochondria of MDA-MB-231 cells by IFF, but not in other subcellular compartments (i.e., cytosol, plasma membrane, and nucleus). The inhibition of FAK or Src abolished flow-induced AMPK activation in the mitochondria of MDA-MB-231 cells. We also observed that global AMPK activation reduced MDA-MB-231 cell migration. Interestingly, specific AMPK inhibition in the mitochondria reduced cell migration and blocked flow-induced cell migration. Our results suggest the linkage of FAK/Src and mitochondria-specific AMPK in mechanotransduction and the differential role of AMPK in breast cancer cell migration depending on its subcellular compartment-specific activation.Item Skeletal loading regulates breast cancer-associated osteolysis in a loading intensity-dependent fashion(Springer Nature, 2020-02-14) Fan, Yao; Jalali, Aydin; Chen, Andy; Zhao, Xinyu; Liu, Shengzhi; Teli, Meghana; Guo, Yunxia; Li, Fangjia; Li, Junrui; Siegel, Amanda; Yang, Lianxiang; Liu, Jing; Na, Sungsoo; Agarwal, Mangilal; Robling, Alexander G.; Nakshatri, Harikrishna; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyOsteocytes are mechanosensitive bone cells, but little is known about their effects on tumor cells in response to mechanical stimulation. We treated breast cancer cells with osteocyte-derived conditioned medium (CM) and fluid flow-treated conditioned medium (FFCM) with 0.25 Pa and 1 Pa shear stress. Notably, CM and FFCM at 0.25 Pa induced the mesenchymal-to-epithelial transition (MET), but FFCM at 1 Pa induced the epithelial-to-mesenchymal transition (EMT). This suggested that the effects of fluid flow on conditioned media depend on flow intensity. Fluorescence resonance energy transfer (FRET)-based evaluation of Src activity and vinculin molecular force showed that osteopontin was involved in EMT and MET switching. A mouse model of tumor-induced osteolysis was tested using dynamic tibia loadings of 1, 2, and 5 N. The low 1 N loading suppressed tumor-induced osteolysis, but this beneficial effect was lost and reversed with loads at 2 and 5 N, respectively. Changing the loading intensities in vivo also led to changes in serum TGFβ levels and the composition of tumor-associated volatile organic compounds in the urine. Collectively, this study demonstrated the critical role of intensity-dependent mechanotransduction and osteopontin in tumor-osteocyte communication, indicating that a biophysical factor can tangibly alter the behaviors of tumor cells in the bone microenvironment.