- Browse by Author
Browsing by Author "Gunderson, Zachary J."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Comparative analysis of authorship trends in the Journal of Hand Surgery European and American volumes: A bibliometric analysis(Elsevier, 2020-05-24) Peters, Alexander W.; Savaglio, Michael K.; Gunderson, Zachary J.; Adam, Gremah; Milto, Anthony J.; Whipple, Elizabeth C.; Loder, Randall T.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineBackground The purpose of this study was to better understand the authorship publishing trends in the field of hand surgery. To accomplish this, a comparative analysis was completed between the European and American volumes of the Journal of Hand Surgery (JHSE and JHSA) over the past three decades. Well-established bibliometric methods were used to examine one representative year from each of the past three decades. The focus of the study was to examine changes in author gender over time as well as to compare authorship trends across the two volumes. Materials and methods All JHSA and JHSE publications from 1985, 1995, 2005, and 2015 were placed into a Microsoft Excel spreadsheet. Data was collected for each publication including the gender of first and corresponding authors, corresponding author position, corresponding author country of origin, number of credited institutions, authors, printed pages, and references. Countries were grouped by regions. Results A total of 450 and 763 manuscripts from JHSE and JHSA, respectively, met inclusion criteria. JHSE and JHSA both showed increases in most variables analyzed over time. Both journals showed an increase in female first and corresponding authors. JHSE and JHSA displayed a rise in collaboration between institutions and countries. Conclusions Both JHSE and JHSA display increasing female inclusion in the hand surgery literature, which has traditionally been a male dominated field. The observed increase in collaboration between institutions and countries is likely linked to advances in technology that allow sharing of information more conveniently and reliably than was previously possible. As further advances are made socially and technologically, hopefully these trends will continue, leading to faster and higher quality research being generated in the field of hand surgery.Item A Comprehensive Review of Mouse Diaphyseal Femur Fracture Models(Elsevier, 2020-07) Gunderson, Zachary J.; Campbell, Zachery R.; McKinley, Todd O.; Natoli, Roman M.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineComplications related to treatment of long bone fractures still stand as a major challenge for orthopaedic surgeons. Elucidation of the mechanisms of bone healing and development, and the subsequent alteration of these mechanisms to improve outcomes, typically requires animal models as an intermediary between in vitro and human clinical studies. Murine models are some of the most commonly used in translational research, and mouse fracture models are particularly diverse, offering a wide variety of customization with distinct benefits and limitations depending on the study. This review critically examines three common femur fracture models in the mouse, namely cortical hole, 3-point fracture (Einhorn), and segmental bone defect. We lay out the general procedure for execution of each model, evaluate the practical implications and important advantages/disadvantages of each and describe recent innovations. Furthermore, we explore the applications that each model is best adapted for in the context of the current state of murine orthopaedic research.Item Dysfunctional stem and progenitor cells impair fracture healing with age(Baishideng Publishing Group, 2019-06-26) Wagner, Diane R.; Karnik, Sonali; Gunderson, Zachary J.; Nielsen, Jeffery J.; Fennimore, Alanna; Promer, Hunter J.; Lowery, Jonathan W.; Loghmani, M. Terry; Low, Philip S.; McKinley, Todd O.; Kacena, Melissa A.; Clauss, Matthias; Li, Jiliang; Orthopaedic Surgery, IU School of MedicineSuccessful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly.Item No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing(Elsevier, 2020-02) Sun, Seungyup; Diggins, Nicklaus H.; Gunderson, Zachary J.; Fehrenbacher, Jill C.; White, Fletcher A.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineNeuropeptides and neurotrophins are key regulators of peripheral nociceptive nerves and contribute to the induction, sensitization, and maintenance of pain. It is now known that these peptides also regulate non-neuronal tissues, including bone. Here, we review the effects of numerous neuropeptides and neurotrophins on fracture healing. The neuropeptides calcitonin-gene related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide (PACAP) have varying effects on osteoclastic and osteoblastic activity. Ultimately, CGRP and SP both accelerate fracture healing, while VIP and PACAP seem to negatively impact healing. Unlike the aforementioned neuropeptides, the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have more uniform effects. Both factors upregulate osteoblastic activity, osteoclastic activity, and, in vivo, stimulate osteogenesis to promote fracture healing. Future research will need to clarify the exact mechanism by which the neuropeptides and neurotrophins influence fracture healing. Specifically, understanding the optimal expression patterns for these proteins in the fracture healing process may lead to therapies that can maximize their bone-healing capabilities and minimize their pain-promoting effects. Finally, further examination of protein-sequestering antibodies and/or small molecule agonists and antagonists may lead to new therapies that can decrease the rate of delayed union/nonunion outcomes and fracture-associated pain.Item Polytraumatized patient lower extremity nonunion development: Raw data(Elsevier, 2021-06-25) Sardesai, Neil R.; Gaski, Greg E.; Gunderson, Zachary J.; Cunningham, Connor M.; Slaven, James; Meagher, Ashley D.; McKinley, Todd O.; Natoli, Roman M.; Orthopaedic Surgery, School of MedicineIn this article we report data collected to evaluate the pathomechanistic effect of acute anaerobic metabolism in the polytraumatized patient and its subsequent effect on fracture nonunion; see "Base Deficit ≥6 within 24 Hours of Injury is a Risk Factor for Fracture Nonunion in the Polytraumatized Patient" (Sardesai et al., 2021) [1]. Data was collected on patients age ≥16 with an Injury Severity Score (ISS) >16 that presented between 2013-2018 who sustained a fracture of the tibia or femur distal to the femoral neck. Patients presenting to our institution greater than 24 hours post-injury and those with less than three months follow-up were excluded. Medical charts were reviewed to collect patient demographic information and known nonunion risk-factors, including smoking, alcohol use, and diabetes. In addition, detailed injury characteristics to quantify injury magnitude including ISS, Glasgow Coma Scale (GCS) at admission, and ICU length of stay were recorded. ISS values were obtained from our institutional trauma database where they are entered by individuals trained in ISS calculations. Associated fracture-related features including fracture location, soft-tissue injury (open vs. closed fracture), vascular injury, and compartment syndrome were recorded. Finally, vital signs, base deficit (BD), and blood transfusions over 24 hours from admission were recorded. We routinely measure BD and less consistently measure serum lactate in trauma patients at the time of presentation or during resuscitation. BD values are automatically produced by our laboratory with any arterial blood gas order, and we recorded BD values from the medical record. Clinical notes and radiographs were reviewed to confirm fracture union versus nonunion and assess for deep infection at the fracture site. Patients were categorized as having a deep infection if they were treated operatively for the infection prior to fracture healing or classification as a nonunion. Nonunion was defined by failure of progressive healing on sequential radiographs and/or surgical treatment for nonunion repair at least six months post-injury.Item Slipped Capital Femoral Epiphysis Associated With Athletic Activity(Sage, 2023) Loder, Randall T.; Gunderson, Zachary J.; Sun, Seungyup; Liu, Raymond W.; Novais, Eduardo V.; Orthopaedic Surgery, School of MedicineBackground: Little data exist regarding the association of slipped capital femoral epiphysis (SCFE) and sporting activities. Hypothesis: There is no association between SCFE and sporting activities. Study design: Retrospective review of all SCFE cases at our institution from 2010 through March 2021. Level of evidence: Level 3. Methods: All patients with idiopathic SCFE were reviewed looking for the presence/absence of sporting activities and symptom onset. Also collected were the age, symptom duration, and weight/height of the patient, sex, race, and stable/unstable nature of the SCFE. The severity of the SCFE was measured using the lateral epiphyseal-shaft angle. Results: There were 193 children (110 boys, 83 girls) with idiopathic SCFEs. The SCFE was stable in 147, unstable in 45, and unknown in 1. The average age was 12.1 ± 1.8 years, average SCFE angle 38° ± 20° and symptom duration 4.0 ± 5.1 months. An association with a sporting activity was present in 64 (33%). The sporting activity was basketball (18), football (11), baseball/softball (10), and others (23). Football, basketball, and soccer predominated in boys, baseball and running sports were equal between boys and girls, and cheerleading/gymnastics/dancing predominated in girls. Differences showed that those involved in sports had a slightly lower body mass index (BMI) (88th percentile vs 95th percentile, P = 0.00). There were no differences between those involved and those not those involved in sporting activities for symptom duration, SCFE severity, sex, race, or stable/unstable SCFE type. Conclusion: Sporting activities are associated with the onset of symptoms in 1 of 3 of patients with SCFE, refuting the null hypothesis. Clinical relevance: A high level of suspicion for SCFE should be given when any peripubertal athlete presents with hip or knee pain regardless of BMI/obesity status, and appropriate imaging performed.